AtmeL ARM-based Flash MCU

SAM4E16E SAM4ESE SAM4E16C SAM4ESC

DATASHEET

Description

The Atmel SAMAE series of Flash microcontrollers is based on the high-performance
32-bit ARM® Cortex®-M4 RISC processor and includes a floating point unit (FPU).
It operates at a maximum speed of 120 MHz and features up to 1024 Kbytes of Flash,
2 Kbytes of cache memory and up to 128 Kbytes of SRAM.

The SAMAE offers a rich set of advanced connectivity peripherals including
10/100 Mbps Ethernet MAC supporting IEEE 1588 and dual CAN. With a single-
precision FPU, advanced analog features, as well as a full set of timing and control
functions, the SAMA4E is the ideal solution for industrial automation, home and building
control, machine-to-machine communications, automotive aftermarket and energy
management applications.

The peripheral set includes a full-speed USB device port with embedded transceiver,
a 10/100 Mbps Ethernet MAC supporting IEEE 1588, a high-speed MCI for
SDIO/SD/MMC, an external bus interface featuring a static memory controller providing
connection to SRAM, PSRAM, NOR Flash, LCD module and NAND Flash, a parallel
1/0 capture mode for camera interface, hardware acceleration for AES256, two
USARTS, two UARTS, two TWIs, three SPIs, as well as a 4-channel PWM, nine
general-purpose 16-bit timers (with stepper motor and quadrature decoder logic
support), one RTC, two analog front end interfaces (16-bit ADC, DAC, MUX and PGA),
one 12-bit DAC (2-ch) and an analog comparator.

11157C-ATARM-25-Jul-13

1. Features

Atmel

Core
e ARM® Cortex®-M4 with 2 Kbytes Cache running at up to 120 MHz®
e Memory Protection Unit (MPU)
e DSP Instruction
e Floating Point Unit (FPU)
e Thumb®-2 Instruction Set
Memories
e Upto 1024 Kbytes Embedded Flash
e 128 Kbytes Embedded SRAM
e 16 Kbytes ROM with Embedded Boot Loader Routines (UART) and IAP Routines
e Static Memory Controller (SMC): SRAM, NOR, NAND Support.
e NAND Flash Controller.
System
e Embedded Voltage Regulator for Single Supply Operation
e Power-on-Reset (POR), Brown-out Detector (BOD) and Dual Watchdog for Safe Operation
e Quartz or Ceramic Resonator Oscillators: 3 to 20 MHz Main Power with Failure Detection and Optional Low-
power 32.768 kHz for RTC or Device Clock
e RTC with Gregorian and Persian Calendar Mode, Waveform Generation in Low-power Modes
e RTC Clock Calibration Circuitry for 32.768 kHz Crystal Frequency Compensation
e High Precision 4/8/12 MHz Factory Trimmed Internal RC Oscillator with 4 MHz Default Frequency for
Device Startup. In-application Trimming Access for Frequency Adjustment
e Slow Clock Internal RC Oscillator as Permanent Low-power Mode Device Clock
e One PLL up to 240 MHz for Device Clock and for USB
e Temperature Sensor
e Up to 2 Peripheral DMA Controller with up to 33 Channels (PDC)
e One 4-channel DMA Controller

Low-power Modes

Sleep and Backup Modes
Ultra Low-power RTC

Peripherals

Two USARTSs with USART1 (ISO7816, IrDA®, RS-485, SPI, Manchester and Modem Modes)
USB 2.0 Device: Full Speed (12 Mbits), 2668 byte FIFO, up to 8 Endpoints. On-chip Transceiver
Two 2-wire UARTS

Two Two-wire Interfaces (TWI)

High-speed Multimedia Card Interface (SDIO/SD Card/MMC)

One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals

Three 3-Channel 32-bit Timer/Counter with Capture, Waveform, Compare and PWM Mode. Quadrature
Decoder Logic and 2-bit Gray Up/Down Counter for Stepper Motor

32-bit Real-time Timer and RTC with Calendar and Alarm Features

One Ethernet MAC (EMAC) 10/100 Mbps in MIl mode only with Dedicated DMA and Support for IEEE1588,
Wake-on-LAN

Two CAN Controllers with eight Mailboxes

4-channel 16-bit PWM with Complementary Output, Fault Input, 12-bit Dead Time Generator Counter for
Motor Control

Real-time Event Management

SAMAE [DATASHEET] 2

11157C-ATARM-25-Jul-13

Cryptography

Note:

Atmel

AES 256-bit Key Algorithm compliant with FIPS Publication 197

Analog

AFE (Analog Front End): 2x16-bit ADC, up to 24-channels, Differential Input Mode, Programmable Gain
Stage, Auto Calibration and Automatic Offset Correction

One 2-channel 12-bit 1 Msps DAC
One Analog Comparator with Flexible Input Selection, Selectable Input Hysteresis

I/0

e Upto 117 I/O Lines with External Interrupt Capability (Edge or Level Sensitivity), Debouncing, Glitch

Filtering and On-die Series Resistor Termination

e Bidirectional Pad, Analog I/O, Programmable Pull-up/Pull-down

e Five 32-bit Parallel Input/Output Controllers, Peripheral DMA Assisted Parallel Capture Mode
Packages

e 144-pball LFBGA, 10x10 mm, pitch 0.8 mm

e 100-ball TFBGA, 9x9 mm, pitch 0.8 mm

e 144-lead LQFP, 20x20 mm, pitch 0.5 mm

e 100-lead LQFP, 14x14 mm, pitch 0.5 mm

1. 120 MHz: -40/+105°C, VDDCORE = 1.2V or using internal voltage regulator

SAMAE [DATASHEET] 3

11157C-ATARM-25-Jul-13

1.1 Configuration Summary

The SAMAE series devices differ in memory size, package and features. Table 1-1 summarizes the configurations of the

device family.
Table 1-1. Configuration Summary
Feature SAM4E16E SAMAESE SAM4E16C SAM4ES8C
Flash 1024 Kbytes 512 Kbytes 1024 Kbytes 512 Kbytes
SRAM 128 Kbytes 128 Kbytes
CMCC 2 Kbytes 2 Kbytes
LFBGA 144 TFBGA 100
Package LQFP 144 LQFP 100
Number of PIOs 117 79

External Bus
Interface

8-bit Data, 4 Chip Selects, 24-bit Address

Analog Front End

Up to 16 bits™V)

Up to 16 bits®

(AFEO \AFE1) 16 chA8ch @ 6ch\4ch®
EMAC YES YES
CAN 2 1
12-bit DAC 2 ch. 2 ch.
Timer 9@ 30)

PDC Channels 24 +9 2149
USART/ UART 2/2 2/2©
USB Full Speed Full Speed
1 port 1 port
HSMCI 4 bits 4 bits
TWI 2 2

Notes: 1. ADC is 12-bit, up to 16 bits with averaging.
For details, please refer to the “Electrical Characteristics” section of this datasheet.

2. AFEOQ is 16 channels and AFEL1 is 8 channels. The total number of AFE channels is 24.
One channel is reserved for the internal temperature sensor.

3. AFEO is 6 channels and AFE1 is 4 channels. The total number of AFE channels is 10.
One channel is reserved for the internal temperature sensor.

4. 9 TC channels are accessible through PIO.
5. 3 TC channels are accessible through PIO.
6. Full Modem support on USART1.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

4

2.

Block Diagram

Figure 2-1. SAMA4E 100-pin Block Diagram

o
N A &
$o%$o é,y & ooo
N\ OQ@C@ «VQ’ 400 AO
QLSS B
AAAdd l T
System Ci
TST —»] Sy ontroller YYVYY Voltage
PCKO-PCK2 <€>{ |€—— Regulator
PLL |—> ¢ Y
PMC I JTAG & Serial Wire I Flgsh . User
Unique Signature]
RC Osc T Identifier
In-circuit Emulator i
24t — ¢ ¢
Cortex-M4 Processor [SysTick Counter| N
XIN <> Fmax 120 MHz v
xouT <> — DSP [Fasy SRAM ROM
N C 1024 KB 16 KB
WKUPO-WKUP15 —3 NERS MPU FPU IS | R 128 KB
XIN32 <€>] —
XOUT;Z(—) D osc 32k
ERASE €| | |RC32kHz
N —
VDDIO —» 8 GPBREG
VDDCORE —| RTT
VDDPLL —>~ POR
RTCOUTO €>| |« o
- > DDP
RTCOUT1 <—>~ < | > DDM
NRST <€ > |
Peripheral Peripheral »| |<—> URXD1
BridgeO Bridgel UART1 el < UTXDL
o [« PwmH[0:3]
DMA P>
PWM — »| [<—> PwML[0:3]
— PDC |« <—> PWMFI0
TWCKO | e . AES-128I256DMA
TWDO +—>| |« > TWI | -
Twek: <— | < q J_[EDCle—r >| | <—> ETXCK-ERXCK-EREFCH
TWD1 «—»| [«— TWIL r5pcfe—> FIFO >| | <> ETXERETXDV
DMA | |< <>
URXDO <+—1> B 128-Byte TX | | <[ECRSECOL, ECRSDV
UTXDO <—f> — UARTO 51> [128-Byte RX < o |<d—> E?i?gs;;w
RXDO <—> > B ¥
T™XDO +—>| |« > Ethernet < > | enoena
SCKO <+—1>| [« > USARTO s MAC < »| |<—» EmDC
RTSO <+——> =l M »| | <—>» EMDIO
CTSO «—»| [—> -«—> Il <
RXD1 -—>| | > < <4—» CANRXO
TXD1 +—1>| |* > <
SCK1 +—>| |« > CANO <—» cantxo
RTS1 +—»| [* USARTL
CTS1 +—1> -«
DSR1 +—1>| |« >
DTR1 <—» DMA
RI1 <+——1> > DG
peb1 > _ Real-time Events
TCLK[0:2] -—> »| Timer Counter A s
TIOA[0:2] -——>| |« =:
. < > TCl0.2
TIOB[0:2] +—1>| |« > [0..2] [Fod
>
-+
-< - .
ADTRG <—1> »[FGA T [Temp. Senso > —> PIOD[7:0]
AFEO_ADI[0..4] <+— > > PeAl < > > <—> PIODCEN1
12-bit AFEO PIO = 4> PIODCEN2
> [PDC > PDC ~ ~<— PIODCLK
ADTRG <—1» >[PGA :—> NPCS0
AFE1_AD[0..3] <—1 > > > <—> NPCS1
[| 12-bit AFE1 - N > NPCS2
- PDC « > SPI - > |<—> NPCs3
ADVREF — T 1 * > | <—> miso
> ACC PDC < >| |<—> mosI
DACO <—» — | > | 4—»> spck
DAC1 <—> [! < o <
>| < »| High Speed MCI | o | MCCK
DATRG <—> [|<—7 12-bit DAC . gn s < > |<—> MCCDA
| |< = [Foc] DMA < >N<—> wmcDA[0..3]

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

Atmel

SAMA4E 144-pin Block Diagram

o
NS &
$O\$O é‘/\/ S OQ
A0, %\G)@% &‘?@ 00 400
QO S S
A A AL ¢ T
TST 3| System Controller YYVYY Voltage
PCKO-PCK2 <€>] J€—— Regulator
PLL ¢ Y Flash User
PMC al Wi
I JTAG & Serial Wire I Unique Signature]
Identifier
RC O -Circui |
In-circuit Emu a\!0r24_bit ¢ ¢
‘N Cortex-M4 Processor [SysTick Counter| N
<> 3-20 MHz Fmax 120 MHz v
XOUT <> e DSP I FLASH SRAM ROM
[c 1024 KB 128 KB 16 KB
WKUPO-WKUP15 —3> [suPC_| MPU FPU —]| 512kB
XIN32 €] o [*D *I
x0UT32 €>| |05 32K HCACHE
ERASE €| [—»{ [RC32kHz
I~
VDDIO —» 8 GPBREG
VDDCORE —» RTT
VDDPLL —>] POR
RTCOUT < g
COUTO <> RTC 2 <—» pOP
RTCOUT1 €>»| |« | g <—» DDM
1 =
NRST <€
Peripheral Peripheral »| | <> URXD1
BridgeO Bridgel UARTL PDC < UTXD1
VA <—» PWMH[0:3]
=EZ < P
— PDC |« <—> PWMFIO
AES-128/256
TWCKO «—>| |« > T DMA
TWDO <+—1> - TWIO [PDC J—»> < > | <—> ETXCK-ERXCK-EREFCK
TWCK1 <+—1> —> — R FIFO < | | 4> ETXER-ETXDV
TWD1 «—>| [«— pDC [+ > DMA| e > ECRS-ECOL, ECRSDV
URXDO <—1> - . 128-Byte TX < > | > ERXERERXDV
UTXDO <—> UARTO Teoc]* ™ 128-Byte RX « D ERX0-ERX3
RXDO <— > > p > ETX0ETX3
TXDO <+—1> P Ethernet < > | d—>
scKo <+—»| |< i USARTO T MAC < »| |<—> EMDC
RTSO <+—1>| |« =T Il > »| |<4—>» EMDIO
CTSO +—>| [—*| P <
RXD1 +—1» < <—>» CANRXO
TXD1 +—»| |+ CANO » |<—» canTxo
SCK1 +— > | ™| UsArTL <
e | |« — CANL < <—>» CANRX1
cTs1 «—>| < > <« <—> CANTX1
DSR1 <+—{» - » |d—> D70
DTR1 +—>| |« DMA »| |<—» AONBSO
RI1 «—> > PDC EBI > | <¢—> A0:23]
DCDL <> R Braiis 8 bit: - <—> AZI;EQ(,\‘:/NANDCLE
; > its > A22)
TCLK[0:2] *+—1> »| Timer Counter A > : » A16/BAO
TIOA[0:2] <——1>| |« N) > | <—> AL7/BAL
TioB[0:2] <—1>| [« »| TCl0.2] =50 Static > |<—» NCso
Memory > |<€¢¢—>» NCS1
. Timer Counter B Controller > |<—> NCS2
> >
TCLK[3:5] > »| |<¢—> NCS3
TIOA[3:5] «—» | |« > > » |<¢—>» NRD
TC[3..5 | o
TI0B[3:5] «— > | |« »L_TCB-5] | r55g NANDFLASH ol | NvRomwe
TCLK[6:8] +—> »| Timer Counter C <— NANDOE
TIoA[6:8] —1>| |, » > 4> NANDWE
TIOB[6:8] «—1> | |« > TCl6.8] < <«—> NWAIT
- —> .
ADTRG <—» »[PGA | |Temp. Sensol e _ _ < <—> glgg[gEolJll
AFEO_AD[0..14] <—» > < > PIO - <—> PIODCEN2
12-bit AFEQ < <—> PIODCLK
— PDC PDC L5
> [- - NPCS0
ADTRG = > PGA <— Npc2l
AFE1_AD[0..7] < > -) > <—> NPCS2
> |12-bit AFEL 155c < N SpI P > |<—> NPCs3
ADVREF — DMA, < > |3 MOSt
— I 1 IFoc < > |<—> MoOsI
BACO N — ACC I« . < >l | 4—> spPck
DACL <—> ﬁ > »| High Speed MCI [i<l i MCCK
DATRG +—» | [« 12-bit DAC - |_"ansp < > |<—> wmcCDA
| |~ re [PDC > DMA - i A\ » MCDA[0..3]

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

3. Signal Description

Table 3-1 gives details on signal names classified by peripheral.

Table 3-1. Signal Description List
Active Voltage
Signal Name Function Type Level Reference Comments
Power Supplies
VDDIO Peripherals 1/0O Lines Power Supply Power 1.62V to 3.6V
VDDIN \égﬁ‘g:r:ftﬁ?‘gg‘xr'g%”;bgAc and Analog | b e 1.62V to 3.6V
VDDOUT Voltage Regulator Output Power 1.2V Output
VDDPLL Oscillator and PLL Power Supply Power 1.08 Vto 1.32V
VDDCORE zr?évtehretr;ee:,;g[]eérg:s embedded memories Power 1.08V to 1.32V
GND Ground Ground
Clocks, Oscillators and PLLs
XIN Main Oscillator Input Input Reset State:
XOUT Main Oscillator Output Output - PIO Input
XIN32 Slow Clock Oscillator Input Input - Internal Pull-up disabled
XOUT32 Slow Clock Oscillator Output Output vDblo L Schmitt Trigger enabled®
Reset State:
PCKO - PCK2 Programmable Clock Output Output - PIO Input
- Internal Pull-up enabled
- Schmitt Trigger enabled®
Real-time Clock
RTCOUTO Programmable RTC waveform output Output Reset State:
- PIO Input
RTCOUT1 Programmable RTC waveform output Output VDI - Internal Pull-up enabled
- Schmitt Trigger enabled®
Serial Wire/JTAG Debug Port - SWJ-DP
TCK/SWCLK Test Clock/Serial Wire Clock Input Reset State:
TDI Test Data In Input - SWJ-DP Mode
TDO/TRACESWO 'cl')eu?t Data Out / Trace Asynchronous Data Output VBDIO ;j:g:;rlggl(sl;ull-up
TMS/SWDIO Test Mode Select /Serial Wire Input/Output | Input / 1/O - Schmitt Trigger enabled®)
JTAGSEL JTAG Selection Input High ﬁﬁﬂﬂi?fnm Internal
Flash Memory
Reset State:
Flash and NVM Configuration Bits Erase . - Erase Input
ERASE Command Input High VDDIO | - Internal Pull-down
enabled
- Schmitt Trigger enabled®

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

Table 3-1.

Signal Description List

Active Voltage
Signal Name Function Type Level | Reference Comments
Reset/Test
NRST Synchronous Microcontroller Reset I/10 Low Permanent Internal
VDDIO Pull-up

TST Test Select Input Permanent Internal

Pull-down
Universal Asynchronous Receiver Transceiver - UARTX
URXDx UART Receive Data Input
UTXDx UART Transmit Data Output
PIO Controller - PIOA - PIOB - PIOC- PIOD - PIOE

PAO - PA31 Parallel 10 Controller A I/0 Reset State:

PBO - PB14 Parallel IO Controller B /0 - P10 or System 10s")
- Internal Pull-up enabled

PCO - PC31 Parallel IO Controller C /0 VDDIO - Schmitt Trigger enabled®

PDO - PD31 Parallel 10 Controller D l[e} Reset State:
- PIO or System 10s®

PEO - PE5 Parallel 10 Controller E I/O - Internal Pull-up enabled
- Schmitt Trigger enabled®

P10 Controller - Parallel Capture Mode

PIODCO-PIODC7 Parallel Capture Mode Data Input

PIODCCLK Parallel Capture Mode Clock Input VDDIO

PIODCEN1-2 Parallel Capture Mode Enable Input

High Speed Multimedia Card Interface - HSMCI

MCCK Multimedia Card Clock IO

MCCDA Multimedia Card Slot A Command IO

MCDAO - MCDA3 Multimedia Card Slot A Data IO

Universal Synchronous Asynchronous Receiver Transmi

tter USARTX

SCKx USARTXx Serial Clock IO
TXDx USARTX Transmit Data I/10
RXDx USARTX Receive Data Input
RTSx USARTx Request To Send Output
CTSx USARTXx Clear To Send Input
DTR1 USART1 Data Terminal Ready I/0
DSR1 USART1 Data Set Ready Input
DCD1 USART1 Data Carrier Detect Output
RI1 USART1 Ring Indicator Input
Timer/Counter - TC
TCLKXx TC Channel x External Clock Input Input
TIOAX TC Channel x I/O Line A I/0
TIOBX TC Channel x I/O Line B I/0

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

8

Table 3-1.

Signal Description List

Active Voltage
Signal Name Function Type Level Reference Comments
Serial Peripheral Interface - SPI
MISO Master In Slave Out I/0
MOSI Master Out Slave In 110
SPCK SPI Serial Clock I/0
SPI_NPCSO SPI Peripheral Chip Select 0 I/O Low
gg:zmiggé) SPI Peripheral Chip Select Output Low
Two-Wire Interface - TWIX
TWDx TWIx Two-wire Serial Data I/10
TWCKX TWIx Two-wire Serial Clock I/10
Analog
ADVREE ADC, DAC and Analog Comparator Analog
Reference
12-bit Analog-Front-End - AFEx
AFEO_ADO- Analog Inputs Analog,
AFEO_AD14 Digital
AFEL_ADO- Analog Inputs Analog,
AFE1_AD7 Digital
ADTRG Trigger Input VDDIO
12-bit Digital-to-Analog Converter - DAC
DACO - DAC1 Analog output 'T)nigli?agl '
DACTRG DAC Trigger Input VDDIO
Fast Flash Programming Interface - FFPI
Egmgmg Programming Enabling Input VDDIO
PGMMO-PGMM3 Programming Mode Input
PGMDO0-PGMD15 Programming Data I/O
PGMRDY Programming Ready Output High
PGMNVALID Data Direction Output Low VDDIO
PGMNOE Programming Read Input Low
PGMCK Programming Clock Input
PGMNCMD Programming Command Input Low
External Bus Interface
DO - D7 Data Bus 10
AO - A23 Address Bus Output
NWAIT External Wait Signal Input Low
Static Memory Controller - SMC
NCSO - NCS3 Chip Select Lines Output Low
NRD Read Signal Output Low

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

9

Table 3-1.

Signal Description List

Active Voltage
Signal Name Function Type Level Reference Comments
NWE Write Enable Output Low
NAND Flash Logic
NANDOE NAND Flash Output Enable Output Low
NANDWE NAND Flash Write Enable Output Low
Pulse Width Modulation Controller- PWMC
PWMH PWM Waveform Output High for channel x Output
Only output in
PWML PWM Waveform Output Low for channel x Output sv%nqulggednttﬁ)e, irrr:ggr?ion is
enabled.
PWMFIO PWM Fault Input Input
Ethernet MAC 10/100 -EMAC
GREFCK Reference Clock Input
GTXCK Transmit Clock Input
GRXCK Receive Clock Input
GTXEN Transmit Enable Output
GTXO0 - GTX3 Transmit Data Output
GTXER Transmit Coding Error Output
GRXDV Receive Data Valid Input
GRXO0 - GRX3 Receive Data Input
GRXER Receive Error Input
GCRS Carrier Sense Input
GCOL Collision Detected Input
GMDC Management Data Clock Output
GMDIO Management Data Input/Output I/O
Controller Area Network-CAN (x=[0:1])
CANRXx CAN Receive Input
CANTXx CAN Transmit Output
USB Full Speed Device
Reset State:
DDM DDM USB Full Speed Data - - USB Mode
Analog, - Internal Pull-down®
Digital Reset State:
DDP DDP USB Full Speed Data + - USB Mode
- Internal Pull-down®
Notes: 1. See “Typical Powering Schematics” section of this datasheet for restrictions on voltage range of Analog Cells.
2. Schmitt Triggers can be disabled through PIO registers.

3. TDO pin is set in input mode when the Cortex-M4 Core is not in debug mode. Thus the internal pull-up corresponding to this PIO line must
be enabled to avoid current consumption due to floating input.

4. Some PIO lines are shared with System 1/Os.

Atmel

SAMA4E [DATASHEET] 10

11157C-ATARM-25-Jul-13

4. Package and Pinout
The SAM4E is available in TFBGA100, LFBGA144, LQFP100, and LQFP144 and packages described in the “SAM4E
Mechanical Characteristics” section of this datasheet.
4.1 100-ball TFBGA Package and Pinout
4.1.1 100-ball TFBGA Package Outline
The 100-ball TFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.1 “100-ball
TFBGA Package Drawing” for details.
4.1.2 100-ball TFBGA Pinout
Table 4-1. SAMA4E 100-ball TFBGA Pinout
Al PB9 C6 PD29 F1 PA19/PGMD11 H6 PA14/PGMD6
A2 PB8 Cc7 PA30 F2 PA20/PGMD12 H7 PA25
A3 PB14 C8 PB5 F3 PD23 H8 PA27
A4 PB10 c9 PD10 F4 GNDIO H9 PA5/PGMN1
A5 PD4 C10 PA1/PGMRDY F5 GNDCORE H10 PA4/PGMNO
A6 PD7 D1 ADVREF F6 GNDIO J1 PA21/PGMD13
A7 PA31 D2 PD1 F7 TST J2 PA7/PGMN3
A8 PA6/PGMN2 D3 GNDCORE F8 PB12 J3 PA22/PGMD14
A9 PA28 D4 GNDCORE F9 PA3/PGMNVALID J4 PD22
Al10 JTAGSEL D5 PD5 F10 PD14 J5 PA16/PGMDS8
B1 PD31 D6 VDDCORE Gl PA17/PGMD9 J6 PA15/PGMD7
B2 PB13 D7 VDDCORE G2 PA18/PGMD10 J7 PD28
B3 VDDPLL D8 PAO/PGMNCMD G3 PD26 J8 PA11/PGMD3
B4 PB11 D9 PD11 G4 PD24 J9 PA9/PGMD1
B5 PD3 D10 PA2/PGMNOE G5 PA13/PGMD5 J10 PD17
B6 PD6 El PBO G6 VDDCORE K1 PD30
B7 PD8 E2 PB1 G7 VDDIO K2 PA8/PGMDO
B8 PD9 E3 PD2 G8 PB6 K3 PD20
B9 PB4 E4 GNDANA G9 PD16 K4 PD19
B10 PD15 E5 VDDIO G10 NRST K5 PA23/PGMD15
C1l PDO E6 VDDIO H1 PB2 K6 PD18
Cc2 VDDIN E7 GNDIO H2 PB3 K7 PA24
C3 VDDOUT E8 PD13 H3 PD25 K8 PA26
C4 GNDPLL E9 PB7 H4 PD27 K9 PA10/PGMD2
C5 PA29 E10 PD12 H5 PD21 K10 PA12/PGMD4

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

11

4.2 144-ball LFBGA Package and Pinout

4.2.1 144-ball LFBGA Package Outline
The 144-ball LFBGA package has a 0.8 mm ball pitch and respects Green Standards. Refer to Section 47.2 “144-ball
LFBGA Package Drawing” for details.

4.2.2 144-ball LFBGA Pinout

Table 4-2. SAMAE 144-ball LFBGA Pinout
Al PE1 D1 ADVREF Gl PC15 K1 PE4
A2 PB9 D2 GNDANA G2 PC13 K2 PA21/PGMD13
A3 PB8 D3 PD31 G3 PB1 K3 PA22/PGMD14
A4 PB11 D4 PDO G4 GNDIO K4 PC2
A5 PD2 D5 GNDPLL G5 GNDIO K5 PA16/PGMDS8
A6 PA29 D6 PD4 G6 GNDIO6 K6 PA14/PGMD6
A7 PC21 D7 PD5 G7 GNDCORE K7 PC6
A8 PD6 D8 PC19 G8 VDDIO K8 PA25
A9 PC20 D9 PD9 G9 PD13 K9 PD20
Al0 PA30 D10 PD29 G10 PD12 K10 PD28
All PD15 D11 PC16 G111 PC9 K11 PD16
Al12 PB4 D12 PA1/PGMRDY G12 PB12 K12 PA4/PGMNO
B1 PE2 El PC31 H1l PA19/PGMD11 L1 PES5
B2 PB13 E2 PC27 H2 PA18/PGMD10 L2 PA7/PGMN3
B3 VDDPLL E3 PE3 H3 PA20/PGMD12 L3 PC3
B4 PB10 E4 PCO H4 PBO L4 PA23/PGMD15
B5 PD1 E5 GNDCORE H5 VDDCORE L5 PA15/PGMD7
B6 PC24 E6 GNDCORE H6 VDDIO L6 PD26
B7 PD3 E7 VDDIO H7 VDDIO L7 PA24
B8 PD7 E8 VDDCORE H8 VDDCORE L8 PC5
B9 PA6/PGMN2 E9 PD8 H9 PD21 L9 PA10/PGMD2
B10 PC18 E10 PC14 H10 PD14 L10 PA12/PGMDA4
B11 JTAGSEL E11 PD11 H11 TEST L11 PD17
B12 PC17 E12 PA2/PGMNOE H12 NRST L12 PC28
C1l VDDIN F1 PC30 J1 PA17/PGMD9 M1 PD30
Cc2 PEO F2 PC26 J2 PB2 M1 PA8/PGMDO
C3 VDDOUT F3 PC29 J3 PB3 M3 PA13/PGMD5
C4 PB14 F4 PC12 J4 PC1 M4 PC7
C5 PC25 F5 GNDIO J5 PC4 M5 PD25
C6 PC23 F6 GNDIO J6 PD27 M6 PD24
Cc7 PC22 F7 GNDCORE J7 VDDCORE M7 PD23
C8 PA31 F8 VDDIO J8 PA26 M8 PD22
c9 PA28 F9 PB7 J9 PA11/PGMD3 M9 PD19
C10 PB5 F10 PC10 J10 PA27 M10 PD18
c11 PAO/PGMNCMD F11 PC11 Ji1 PB6 M11 PA5/PGMN1
C12 PD10 F12 | PA3/PGMNVALID J12 PC8 M12 PA9/PGMD1

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12

4.3 100-lead LQFP Package and Pinout

4.3.1 100-lead LQFP Package Outline

The 100-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.3 “100-
lead LQFP Package Drawing” for details.

4.3.2 100-lead LQFP Pinout

Table 4-3. SAM4E 100-lead LQFP Pinout

1 PDO 26 PA22/PGMD14 51 PD28 76 PD29
2 PD31 27 PA13/PGMD5 52 PA5/PGMN1 77 PB5

3 GND 28 VDDIO 53 PD17 78 PD9

4 VDDOUT 29 GND 54 PA9/PGMD1 79 PA28
5 VDDIN 30 PA16/PGMD8 55 PA4/PGMNO 80 PD8

6 GND 31 PA23/PGMD15 56 PD16 81 PAG6/PGMN2
7 GND 32 PD27 57 PB6 82 PA30
8 GND 33 PA15/PGMD7 58 NRST 83 PA31
9 ADVREF 34 PA14/PGMD6 59 PD14 84 PD7
10 GND 35 PD25 60 TST 85 PD6
11 PB1 36 PD26 61 PB12 86 VDDCORE
12 PBO 37 PD24 62 PD13 87 PD5
13 PA20/PGMD12 38 PA24 63 PB7 88 PD4
14 PA19/PGMD11 39 PD23 64 PA3/PGMNVALID 89 PD3
15 PA18/PGMD10 40 PA25 65 PD12 90 PA29
16 PA17/PGMD9 41 PD22 66 PA2/PGMNOE 91 PD2
17 PB2 42 PA26 67 GND 92 PD1
18 VDDCORE 43 PD21 68 VDDIO 93 VDDIO
19 VDDIO 44 PA11/PGMD3 69 PD11 94 PB10
20 PB3 45 PD20 70 PA1/PGMRDY 95 PB11
21 PA21/PGMD13 46 PA10/PGMD2 71 PD10 96 VDDPLL
22 VDDCORE 47 PD19 72 PAO 97 PB14
23 PD30 48 PA12/PGMD4 73 JTAGSEL 98 PB8
24 PA7/PGMN3 49 PD18 74 PB4 99 PB9
25 PA8/PGMDO 50 PA27 75 PD15 100 PB13

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

13

4.4 144-lead LQFP Package and Pinout

4.4.1 144-lead LQFP Package Outline

The 144-lead LQFP package has a 0.5 mm ball pitch and respects Green Standards. Please refer to Section 47.4 “144-
lead LQFP Package Drawing” for details.

4,42 144-lead LQFP Pinout

Table 4-4. SAMAE 144-lead LQFP Pinout

1 PDO 37 PA22/PGMD14 73 PA5/PGMN1 109 PB5
2 PD31 38 PC1 74 PD17 110 PD9
3 VDDOUT 39 PC2 75 PA9/PGMD1 111 PC18
4 PEO 40 PC3 76 pPC28 112 PA28
5 VDDIN 41 PC4 77 PA4/PGMNO 113 PD8
6 PE1 42 PA13/PGMD5 78 PD16 114 PAG6/PGMN2
7 PE2 43 VDDIO 79 PB6 115 GND
8 GND 44 GND 80 VDDIO 116 PA30
9 ADVREFP 45 PA16/PGMD8 81 VDDCORE 117 PC19
10 PE3 46 PA23/PGMD15 82 PC8 118 PA31
11 PCO 47 PD27 83 NRST 119 PD7
12 pPC27 48 PC7 84 PD14 120 PC20
13 PC26 49 PA15/PGMD7 85 TEST 121 PD6
14 PC31 50 VDDCORE 86 PC9 122 PC21
15 PC30 51 PA14/PGMD6 87 PB12 123 VDDCORE
16 PC29 52 PD25 88 PD13 124 PC22
17 PC12 53 PD26 89 PB7 125 PD5
18 PC15 54 PC6 90 PC10 126 PD4
19 PC13 55 PD24 91 PA3 127 PC23
20 PB1 56 PA24 92 PD12 128 PD3
21 PBO 57 PD23 93 PA2 129 PA29
22 PA20/PGMD12 58 PC5 94 PC11 130 PC24
23 PA19/PGMD11 59 PA25 95 GND 131 PD2
24 PA18/PGMD10 60 PD22 96 VDDIO 132 PD1
25 PA17/PGMD9 61 GND 97 PC14 133 PC25
26 PB2 62 PA26 98 PD11 134 VDDIO
27 PE4 63 PD21 99 PA1 135 GND
28 PE5 64 PA11/PGMD3 100 PC16 136 PB10
29 VDDCORE 65 PD20 101 PD10 137 PB11
30 VDDIO 66 PA10/PGMD2 102 PAO 138 GND
31 PB3 67 PD19 103 PC17 139 VDDPLL
32 PA21/PGMD13 68 PA12/PGMD4 104 JTAGSEL 140 PB14
33 VDDCORE 69 PD18 105 PB4 141 PB8
34 PD30 70 PA27 106 PD15 142 PB9
35 PA7/PGMN3 71 PD28 107 VDDCORE 143 VDDIO
36 PA8/PGMDO 72 VDDIO 108 PD29 144 PB13

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

14

5. Power Considerations

5.1 Power Supplies

The SAMAE has several types of power supply pins:

e VDDCORE pins: power the core, the first flash rail, the embedded memories and the peripherals.
Voltage ranges from 1.08V to 1.32V.

e VDDIO pins: power the peripheral I/O lines (Input/Output Buffers), the second flash rail, the backup part, the USB
transceiver, 32 kHz crystal oscillator and oscillator pads.
Voltage ranges from 1.62V to 3.6V.

e VDDIN pins: voltage regulator input, DAC and Analog Comparator power supply.
Voltage ranges from 1.62V to 3.6V.

e VDDPLL pin: powers the PLL, the Fast RC and the 3 to 20 MHz oscillator.
Voltage ranges from 1.08V to 1.32V.

5.2 Voltage Regulator
The SAM4E embeds a voltage regulator that is managed by the Supply Controller.

This internal regulator is designed to supply the internal core of SAM4E It features two operating modes:

e In normal mode, the voltage regulator consumes less than 500 pA static current and draws 80 mA of output
current. Internal adaptive biasing adjusts the regulator quiescent current depending on the required load current.
In wait mode quiescent current is only 5 pA.

e In backup mode, the voltage regulator consumes less than 1.5 pA while its output (VDDOUT) is driven internally to
GND. The default output voltage is 1.20V and the start-up time to reach normal mode is less than 300 ps.

For adequate input and output power supply decoupling/bypassing, refer to the “Voltage Regulator” section in the
“Electrical Characteristics” section of the datasheet.

5.3 Typical Powering Schematics

The SAMA4E supports a 1.62V-3.6V single supply mode. The internal regulator input is connected to the source and its
output feeds VDDCORE. Figure 5-1 below shows the power schematics.

As VDDIN powers the voltage regulator, the DAC and the analog comparator, when the user does not want to use the
embedded voltage regulator, it can be disabled by software via the SUPC (note that this is different from backup mode).

Figure 5-1. Single Supply

~ VDDIO s
. - ¢ [ﬂ_ Transceivers
Main Supply ‘I’ j
(1.8V-3.6V) i ADC, DAC
. Analog Comp.
VDDIN =
(—
VDDOUT —
4@‘_ Voltage
' Regulator
VDDCORE
T—"—D
VDDPLL E:I:
Note: Restrictions:
- For USB, VDDIO needs to be greater than 3.0V
- For AFE, VDDIN needs to be greater than 2.0V
- For DAC, VDDIN needs to be greater than 2.4V
SAMAE [DATASHEET 15
Atmel []

11157C-ATARM-25-Jul-13

Figure 5-2. Core Externally Supplied

Main Supply VDDIO]
(1.62V-3.6V) o H j | UsB
'. - ! Transceivers
same sunply ! , ADC, DAC
. . Analog Comp.
ADC, DAC, Analog ¥ _ VDDIN 1™ $
Comparator Supply RS L]
(2.0V-3.6V) II, !
VDDOUT m<— Voltage
! Regulator
VDDCORE Supply VDDCOR%I ' |

(1.08V-1.32V) T

VDDPLL

Note: Restrictions:
- For USB, VDDIO needs to be greater than 3.0V.
- For AFE, VDDIN needs to be greater than 2.0V
- For DAC, VDDIN needs to be greater than 2.4V

5.4 Active Mode
Active mode is the normal running mode with the core clock running from the fast RC oscillator, the main crystal oscillator
or the PLLA. The power management controller can be used to adapt the frequency and to disable the peripheral clocks.
5.5 Low-power Modes

The SAMA4E has the following low-power modes: backup mode, wait mode and sleep mode.

Note: The Wait For Event instruction (WFE) of the Cortex-M4 core can be used to enter any of the low-power modes, how-
ever, this may add complexity in the design of application state machines. This is due to the fact that the WFE
instruction goes along with an event flag of the Cortex core (cannot be managed by the software application). The
event flag can be set by interrupts, a debug event or an event signal from another processor. Since it is possible for an
interrupt to occur just before the execution of WFE, WFE takes into account events that happened in the past. As a
result, WFE prevents the device from entering wait mode if an interrupt event has occurred.

Atmel has made provision to avoid using the WFE instruction. The workarounds to ease application design are as fol-
lows:
- For backup mode, switch off the voltage regulator and configure the VROFF bit in the Supply Controller Control Reg-
ister (SUPC_CR).
- For wait mode, configure the WAITMODE bit in the PMC Clock Generator Main Oscillator Register of the Power Man-
agement Controller (PMC)
- For sleep mode, use the Wait For Interrupt (WFI) instruction.
Complete information is available in Table 5-1 “Low-power Mode Configuration Summary” .
5.5.1 Backup Mode

The purpose of backup mode is to achieve the lowest power consumption possible in a system which is performing

periodic wake-ups to perform tasks but not requiring fast startup time. Total current consumption is 1 pA typical (VDDIO

= 1.8V to 25°).

The Supply Controller, zero-power power-on reset, RTT, RTC, backup registers and 32 kHz oscillator (RC or crystal

oscillator selected by software in the Supply Controller) are running. The regulator and the core supply are off.

The SAM4E can be awakened from this mode using the WKUPO-15 pins, the supply monitor (SM), the RTT or RTC

wake-up event.

Backup mode is entered by writing a 1 to the VROFF bit of the Supply Controller Control register (SUPC_CR) (A key is

needed to write the VROFF bit, refer to the Supply Controller SUPC section of the product datasheet) and with the

SAMA4E [DATASHEET)] 16
/ItmeL 11157C-ATARM-25-Jul-13

5.5.2

SLEEPDEEP bit in the Cortex-M4 System Control register set to 1. (See the power management description in the ARM
Cortex-M4 Processor section of the product datasheet).

To enter backup mode using the VROFF bit;
e Write a 1 to the VROFF bit of SUPC_CR.

To enter backup mode using the WFE instruction:
e Write a 1 to the SLEEPDEEP bit of the Cortex-M4 processor.
e Execute the WFE instruction of the processor.

In both cases, exit from backup mode happens if one of the following enable wake up events occurs:

e WKUPENO-15 pins (level transition, configurable debouncing)
e Supply Monitor alarm
e RTC alarm
e RTT alarm
Wait Mode

The purpose of wait mode is to achieve very low power consumption while maintaining the whole device in a powered
state for a startup time of less than 10 ps. Current consumption in wait mode is typically 32 pA (total current
consumption) if the internal voltage regulator is used.

In this mode, the clocks of the core, peripherals and memories are stopped. However, the core, peripherals and
memories power supplies are still powered. From this mode, a fast start up is available.

This mode is entered by setting the WAITMODE bit to 1 in the CKGR_MOR register in conjunction with FLPM = 0 or
FLPM = 1 bits of the PMC_FSMR register or by the WFE instruction.

The Cortex-M4 is able to handle external or internal events in order to wake-up the core. This is done by configuring the
external lines WUPO-15 as fast startup wake-up pins (refer to Section 5.7 “Fast Start-up”). RTC or RTT Alarm and USB
wake-up events can be used to wake up the CPU.
To enter wait mode with WAITMODE bit:
e Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
Set Flash Wait State at O.
Set the WAITMODE bit = 1 in PMC Main Oscillator Register (CKGR_MOR).
Wait for Master Clock Ready MCKRDY =1 in the PMC Status Register (PMC_SR).
To enter wait mode with WFE:
e Select the 4/8/12 MHz fast RC oscillator as Main Clock.
Set the FLPM field in the PMC Fast Startup Mode Register (PMC_FSMR).
Set Flash Wait State at O.
Set the LPM bit in the PMC Fast Startup Mode Register (PMC_FSMR).
Execute the Wait-For-Event (WFE) instruction of the processor.

In both cases, depending on the value of the field Flash Low Power Mode (FLPM), the Flash enters three different
modes:

e FLPM =0 in Standby mode (Low consumption)
e FLPM =1 in Deep power-down mode (Extra low consumption)
e FLPM =2 in Idle mode. Memory ready for Read access

Table 5-1 summarizes the power consumption, wake-up time and system state in wait mode.

Atmel SAMAE [DATASHEET] 17

11157C-ATARM-25-Jul-13

5.5.3 Sleep Mode

The purpose of sleep mode is to optimize power consumption of the device versus response time. In this mode, only the
core clock is stopped. The peripheral clocks can be enabled. The current consumption in this mode is application
dependent.

This mode is entered via WFI or WFE instructions.

The processor can be awakened from an interrupt if the WFI instruction of the Cortex-M4 is used or from an event if the
WEFE instruction is used.

5.5.4 Low-power Mode Summary Table

The modes detailed above are the main low-power modes. Each part can be set to on or off separately and wake-up
sources can be individually configured. Table 5-1 below provides the configuration summary of the low-power modes.

Table 5-1. Low-power Mode Configuration Summary
SUPC,
32 kHz
Oscillator,
RTC, RTT
Backup
Registers,
POR Core PIO State
(Backup Memory Potential Wake-Up | Core at | whilein Low-| PIO State at | Consumption | Wake-up
Mode Region) Regulator | Peripherals Mode Entry Sources Wake-Up | Power Mode | Wake Up @E) Time®
PIOA & PIOB
VROFF =1 WUPO-15 pins & PIOC&
Backup OFF or SM alarm Previous PIOD & @
Mode ON OFF (Not powered) | WEE + RTC alarm Reset state saved PIOE 1uAtyp <1lms
SLEEPDEEP = 1 RTT alarm Inputs with
pull-ups
WAITMODE =1 +
FLPM =0 Any Event from:
Wait Mode or Fast startup through
w/Flash in Powered WUPO0-15 Clocked | Previous ©)
Standby ON ON (Not clocked) WFE + B RTC alarm back state saved Unchanged 56 uA 10us
Mode SLEEPDEEP =0 | R7T glarm
+LPM=1+FLPM | USB wake-up
=0
WAITMODE =1 +
. FLPM =1 Any Event from:
Wait Moqe Fast startup through
w/Flash in Powered or WUPO0-15 Clocked | Previous
Deep ON ON (Not clocked) WFE + RTC alarm back state saved Unchanged 46.6 A <100us
Power- SLEEPDEEP =0 | o7 glarm
down Mode +LPM=1+FLPM | USB wake-up
=1
Entry mode =WFI|
Interrupt Only;
Entry mode =WFE
WFE Any Enabled
o or Interrupt and/or Any
Powered (N Event from: Clocked | Previous ©) ®)
Sleep Mode ON ON ot clocked) \éVLFEIgPDEEP -0 Fast start-up through | back state saved Unchanged
- B WUPO0-15
+LPM=0 RTC alarm
RTT alarm
USB wake-up
Notes: 1. When considering wake-up time, the time required to start the PLL is not taken into account. Once started, the device works with the 4/8/12
MHz fast RC oscillator. The user has to add the PLL start-up time if it is needed in the system. The wake-up time is defined as the time
taken for wake up until the first instruction is fetched.
2. The external loads on PIOs are not taken into account in the calculation.
3. Supply Monitor current consumption is not included.
4. Total consumption 1pA typ to 1.8V on VDDIO to 25°.
5. Power consumption on VDDCORE. For total current consumption, please refer to the “Electrical Characteristics” section of this datasheet.
6. Depends on MCK frequency.
7. In this mode the core is supplied and not clocked but some peripherals can be clocked.

Atmel

SAMA4E [DATASHEET] 18

11157C-ATARM-25-Jul-13

5.6 Wake-up Sources

The wake-up events allow the device to exit the backup mode. When a wake-up event is detected, the Supply Controller
performs a sequence which automatically reenables the core power supply and the SRAM power supply, if they are not
already enabled.

Figure 5-3. Wake-up Source

ETIEESN
smout __ ——— |)
)
rtc_alarm /)
Core
} Supply
rtt_alarm | J Restart
[wkupeNo| [wiupiso
Falling/Rising I—
WKUPO D— Edge
Detector
o orq | LCK
WKUPT1 [wkuPeN1| | wkupist | S L>
[
Falling/Rising Debouncer g
WKUP1 D— Edge
X Detector
1
1
: [wkupPeN1s| | wkupis1s|
1
! Falling/Rising L
WKUP15 D— Edge
Detector
SAM4E [DATASHEET)] 19
AtmeL 11157C-ATARM-25-Jul-13

5.7 Fast Start-up

The SAMAE allows the processor to restart in a few microseconds while the processor is in wait mode or in sleep mode.
A fast start-up can occur upon detection of a low level on one of the 19 wake-up inputs (WKUPO to 15 + RTC +
RTT + USB).

The fast restart circuitry, as shown in Figure 5-4, is fully asynchronous and provides a fast start-up signal to the Power
Management Controller. As soon as the fast start-up signal is asserted, the PMC automatically restarts the embedded
4/8/12 MHz Fast RC oscillator, switches the master clock on this 4 MHz clock and reenables the processor clock.

Figure 5-4. Fast Start-up Sources
FSTTO

WKUPO P
FSTPO FSTT1

WKUP1 P

WKUP15 P

FSTP15 RTTAL

|
|
|
|
! FSTT15
|

1

fast_restart

ENGERNGENGE
Ty 95

RTT Alarm
:
RTC Alarm
:
USB Alarm
SAMAE [DATASHEET 20
Atmel []

11157C-ATARM-25-Jul-13

6. Input/Output Lines

The SAMA4E has several kinds of input/output (I/O) lines such as general-purpose 1/0Os (GPIO) and system 1/0Os. GPIOs
can have alternate functionality due to multiplexing capabilities of the P1O controllers. The same PIO line can be used
whether in I/O mode or by the multiplexed peripheral. System 1/Os include pins such as test pins, oscillators, erase or
analog inputs.

6.1 General-purpose I/O Lines

GPIO lines are managed by PIO Controllers. All I/Os have several input or output modes such as pull-up or pull-down,
input Schmitt triggers, multi-drive (open-drain), glitch filters, debouncing or input change interrupt. Programming of these
modes is performed independently for each I/O line through the PIO controller user interface. For more details, refer to
the product “PIO Controller” section.

Some GPIOs can have an alternate function as analog input. When a GPIO is set in analog mode, all digital features of
the I/O are disabled.

The input/output buffers of the PIO lines are supplied through VDDIO power supply rail.

The SAMA4E device embeds high speed pads able. See “AC Characteristics” section of the datasheet for more details.
Typical pull-up and pull-down value is 100 kQ for all I/Os.

Each I/O line also embeds an ODT (On-Die Termination), (see Figure 6-1 below). It consists of an internal series resistor
termination scheme for impedance matching between the driver output (SAM4E) and the PCB trace impedance
preventing signal reflection. The series resistor helps to reduce |0s switching current (di/dt) thereby reducing in turn,
EMI. It also decreases overshoot and undershoot (ringing) due to inductance of interconnect between devices or
between boards. In conclusion, ODT helps diminish signal integrity issues.

Figure 6-1. On-die Termination

TTTTTTTTTTTTTTT Ty Z0 ~ Zout + Rodt

1 1

1 1

| obT |

! 36 Ohms Typ. !

i i

Pl S AT O

i E 7 7 Receiver

! SAM4 Driver with ! PCB Trace

Lo i z0-500nms

SAMA4E [DATASHEET)] 21

Atmel

11157C-ATARM-25-Jul-13

6.2 System I/O Lines

System /O lines are pins used by oscillators, test mode, reset and JTAG to name but a few. Described below in Table 6-
1 are the SAM4E system I/O lines shared with PIO lines.

These pins are software configurable as general-purpose 1/O or system pins. At start-up, the default function of these
pins is always used.

Table 6-1. System 1/O Configuration Pin List.

SYSTEM_IO Default Function Constraints
Bit Number after Reset Other Function for Normal Start Configuration
12 ERASE PB12 Low Level at start-up™®
7 TCK/SWCLK PB7 - In Matrix User Interface registers
6 TMS/SWDIO PB6 _ (Refer to the System 1/O
Configuration Register in the “Bus
5 TDO/TRACESWO PB5 - Matrix” section of this datasheet.)
4 TDI PB4 -
- PA7 XIN32 -
See footnote ® below
- PA8 XOUT32 -
- PB9 XIN -
See footnote @ below
- PB8 XOuT -

Notes: 1. If PB12isused as PIO input in user applications, a low level must be ensured at startup to prevent Flash erase before
the user application sets PB12 into PIO mode,

2. In the product Datasheet Refer to: “Slow Clock Generator” of the “Supply Controller” section.
3. Inthe product Datasheet Refer to: “3 to 20 MHz Crystal Oscillator” information in the “PMC” section.

Atmel SAMAE [DATASHEET] 22

11157C-ATARM-25-Jul-13

Atmel

7.

Product Mapping

Figure 7-1. SAMA4E Product Mapping

OX4000000C Peripherals
PWM
0x40064000) 36
Code P
0x00000000——— 2% 500600000, Address memory space B nes
Boot Memory ,+* 0x40008000
0x00400000 Code .~ Reserved
Internal Flash e 0x40010000
0x0080000C 0x20000Q e CANO
Internal ROM JEUPEPE Tt . 0x40014000 37
0x00C0000C . Internal SRAM L CAN1
Reserved . . 0x40018000) 38
OX1FFFFFFF P
Reserved
0x40034000)
N Internal SRAM . +” Peripherals GMAC
RS 0x4003800¢
SRAM 0X6000000¢
0x20400000 . K i Reserved
X ‘ i | 0x40044000
Reserved K Extemal SRaM [I WP Sy Control
o . eserve 0x400600(ys Controller
Undefined (Abort B 0x40048000 P sMc
o | Reserved - -~ "0x40060200 8
Reserved H 0x4006000¢ Reserved
N MP Sys Controller
) 0x40060600)
\ 0x4008000(. v
External SRAM H HsMCI .
0x6000000C et N 0X40084000 *+ 0x4006080(
| x: N
EBI Chip Select 0 ystem | o . Reserved
0x61000000 - | - Oxa00B1600
EBI Chip Select 1 \ 0x4008800(.
. ~ reserved
0x6200000¢ ' SPI 0x40071
E8I Chip Select 2 | 0x4008C000, 19 .
0x6300000C N Reserved
E8I Chip Select 3 | 0x40090000,
0x64000000 | T oo
reserved '.‘ +0x40 o 2L
| TC1
+0x80)| T 22
| TC2
0x40094000| ——— 23
System Controller H TC3
0X400E0000 — | 2
' +0x40
Reserved ", B TC1 Tca
OX400E020(| 25
MATRIX N 5 O80T ey
N | TC5
0X400E0400 N \ 26
\ . 0x40098000)
PMC \ | c2
5 | ' Tce
0X400E0600 \ . 27
UARTO \ b R
\ | TC7
0x400E0740 \ | 28
CHIPID \ E R
\ | TC8
0x400E0800 \ \ 29
| L\ 0x4009C00C
Reserved N B
\ N Reserved
0X400E0AQ0 \ v
y " 0x400A0000
EFC \ Y
0x400E0C00 u 5 . USARTO
\ . 0x400A4000
Reserved “ N
0X400E0EQC p | USARTL
" . 0X400A8000 15
PIOA U
0x400E1000 N e
L 0x400AC000 17
PIOB Lo
0x400E1200 10 Lo i
. 0x400B00OC 18
PIOC v
0x400E1400 11 N ArECo
oD ", 0x40084000) 30
0x400E1600 12 5 ArECL
X ot 0x4008800¢
0x400E1600 13 % pace
x . 0X400BC000 32
0x400E1800 B nee
x VSC oot 0x400€000¢ 33
ot % DMAC
4
X101 vsc . 0x400C400¢ 20
ox30 W cmce
+ W
" lsvse 0x400C800
RTT VY
3 v Reserved
+0X50 o
Svse 0X400E0000)
woT i
4 [System Controller
+0X60 :
Svse 0X400E2600,
RTC PPt
0x90 2 i f Reserved
+ .
. -~ Dx6000000C
SYSC Gpr o
R JPtaes
RSWDT Pt

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

23

8. Memories
8.1 Embedded Memories
8.1.1 Internal SRAM
The SAMA4E device (1024 Kbytes) embeds a total of 128 kbytes of high-speed SRAM.
The SRAM is accessible over System Cortex-M4 bus at address 0x2000_0000.
The SRAM is in the bit band region. The bit band alias region is from 0x2200_0000 to Ox23FF_FFFF.
8.1.2 Internal ROM
The SAMA4E device embeds an internal ROM, which contains the SAM Boot Assistant (SAM-BA®), In Application
Programming routines (IAP) and Fast Flash Programming Interface (FFPI).
At any time, the ROM is mapped at address 0x0080 0000.
8.1.3 Embedded Flash
8.1.3.1 Flash Overview
The memory is organized in sectors. Each sector has a size of 64 kbytes. The first sector of 64 kbytes is divided into
three smaller sectors.
The three smaller sectors are organized to consist of two sectors of 8 kbytes and one sector of 48 kbytes. Refer to Figure
8-1, "Global Flash Organization" below.
Figure 8-1. Global Flash Organization
Flash Organization
Sector size Sector name
8 Kbytes Small Sector 0
8 Kbytes Small Sector 1 Sector 0
48 Kbytes Larger Sector
64 Kbytes Sector 1
64 Kbytes Sector n
SAMA4E [DATASHEET)] 24
AtmeL 11157C-ATARM-25-Jul-13

Each Sector is organized in pages of 512 bytes.

For sector O:
e The smaller sector 0 has 16 pages of 512 bytes
e The smaller sector 1 has 16 pages of 512 bytes
e The larger sector has 96 pages of 512 bytes
From Sector 1 to n:

The rest of the array is composed of 64 kbyte sector of each 128 pages of 512 bytes. Refer to Figure 8-2, "Flash Sector
Organization” below.

Figure 8-2. Flash Sector Organization
Flash Sector Organization

A sector size is 64 KBytes

16 pages of 512 Bytes Smaller sector 0

Sector 0 16 pages of 512 Bytes | Smaller sector 1

96 pages of 512 Bytes Larger sector

Sector n 128 pages of 512 Bytes

Flash size varies by product. The Flash size of SAM4E device is 1024 kbytes.
Refer to Figure 8-3, "Flash Size" below for the organization of the Flash following its size.

Figure 8-3. Flash Size

Flash 1 Mbytes

2 * 8 Kbytes

1 * 48 Kbytes

15 * 64 Kbytes

Erasing the memory can be performed as follows:
e On ab512-byte page inside a sector, of 8 Kbytes
e On a 4-kbyte block inside a sector of 8 Kbytes/48 Kbytes/64 Kbytes
e On a sector of 8 kbytes/48 kbytes/64 kbytes
e Onchip

Atmel SAMAE [DATASHEET] 25

11157C-ATARM-25-Jul-13

8.1.3.2

8.1.3.3

8.1.3.4

8.1.3.5

8.1.3.6

The memory has one additional reprogrammable page that can be used as page signature by the user. It is accessible
through specific modes, for erase, write and read operations. Erase pin assertion will not erase the user signature page.

Erase memory by page is possible only in sector of 8 kbytes:
e EWP and EWPL commands can be only used in 8 kbytes sector

The write commands of the flash cannot be used under 330 kHz.

Enhanced Embedded Flash Controller

The Enhanced Embedded Flash Controller manages accesses performed by the masters of the system. It enables
reading the Flash and writing the write buffer. It also contains a user interface, mapped on the APB.

The Enhanced Embedded Flash Controller ensures the interface of the Flash block.
It manages the programming, erasing, locking and unlocking sequences of the Flash using a full set of commands.

One of the commands returns the embedded Flash descriptor definition that informs the system about the Flash
organization, thus making the software generic.

Flash Speed

The user needs to set the number of wait states depending on the frequency used:

For more details, refer to the “AC Characteristics” section of the product “Electrical Characteristics”.
Target for the Flash speed at 0 wait state: 24 MHz.

Lock Regions

Several lock bits are used to protect write and erase operations on lock regions. A lock region is composed of several
consecutive pages, and each lock region has its associated lock bit.

Table 8-1. Lock bit number

Product Number of lock bits Lock region size
SAM4E 128 8 Kbytes

If a locked region’s erase or program command occurs, the command is aborted and the EEFC triggers an interrupt.

The lock bits are software programmable through the EEFC User Interface. The command “Set Lock Bit” enables the
protection. The command “Clear Lock Bit” unlocks the lock region.

Asserting the ERASE pin clears the lock bits, thus unlocking the entire Flash.

Security Bit Feature

The SAM4E device features a security bit, based on a specific general-purpose NVM bit (GPNVM bit 0). When the
security is enabled, any access to the Flash, SRAM, core registers and internal peripherals either through the ICE
interface or through the Fast Flash Programming Interface, is forbidden. This ensures the confidentiality of the code
programmed in the Flash.

This security bit can only be enabled through the command “Set General Purpose NVM Bit 0” of the EEFC User
Interface. Disabling the security bit can only be achieved by asserting the ERASE pin at 1, and after a full Flash erase is
performed. When the security bit is deactivated, all accesses to the Flash, SRAM, Core registers, Internal Peripherals
are permitted.

It is important to note that the assertion of the ERASE pin should always be longer than 200 ms.

As the ERASE pin integrates a permanent pull-down, it can be left unconnected during normal operation. However, it is
safer to connect it directly to GND for the final application.

Calibration Bits

NVM bits are used to calibrate the brownout detector and the voltage regulator. These bits are factory configured and
cannot be changed by the user. The ERASE pin has no effect on the calibration bits.

Atmel SAMAE [DATASHEET] 26

11157C-ATARM-25-Jul-13

8.1.3.7 Unique Identifier

Each device integrates its own 128-bit unique identifier. These bits are factory configured and cannot be changed by the
user. The ERASE pin has no effect on the unique identifier.

8.1.3.8 User Signature

Each part contains a user signature of 512 bytes. It can be used by the user to store user information, such as trimming,
keys, etc., that the customer does not want to be erased by asserting the ERASE pin or by software ERASE command.
Read, write and erase of this area is allowed.

8.1.3.9 Fast Flash Programming Interface

The Fast Flash Programming Interface allows programming the device through a multiplexed fully-handshaked parallel
port. It allows gang programming with market-standard industrial programmers.

The FFPI supports read, page program, page erase, full erase, lock, unlock and protect commands.

The Fast Flash Programming Interface is enabled and the Fast Programming mode is entered when TST and PAO and
PAlare tied low.

8.1.3.10 SAM-BA Boot
The SAM-BA boot is a default boot program which provides an easy way to program in-situ the on-chip Flash memory.
The SAM-BA boot assistant supports serial communication via the UART
The SAM-BA boot provides an interface with SAM-BA Graphic User Interface (GUI).
The SAM-BA boot is in ROM and is mapped in Flash at address 0x0 when GPNVM bit 1 is set to 0.

8.1.3.11 GPNVM Bits

The SAMA4E device features two GPNVM bits. These bits can be cleared or set respectively through the commands
“Clear GPNVM Bit” and “Set GPNVM Bit” of the EEFC User Interface.

The Flash of SAM4E is composed of 1024 kbytes in a single bank.

Table 8-2. General-purpose Non-volatile Memory Bits

GPNVMBIt[#] Function
0 Security bit
1 Boot mode selection

8.1.4 Boot Strategies

The system always boots at address 0x0. To ensure maximum boot possibilities, the memory layout can be changed via
GPNVM.

A general-purpose NVM (GPNVM) bit is used to boot either on the ROM (default) or from the Flash.

The GPNVM bit can be cleared or set respectively through the commands “Clear General-purpose NVM Bit” and “Set
General-purpose NVM Bit” of the EEFC User Interface.

Setting GPNVM Bit 1 selects the boot from the Flash, clearing it selects the boot from the ROM. Asserting ERASE clears
the GPNVM Bit 1 and thus selects the boot from the ROM by default.

Atmel SAMAE [DATASHEET] 27

11157C-ATARM-25-Jul-13

8.2 External Memories

The SAMA4E device features one External Bus Interface to provide an interface to a wide range of external memories and
to any parallel peripheral.

8.3 Cortex-M Cache Controller (CMCC)

The SAM4E device features one cache memory and his controller which improve code execution when the code runs out
of Code section (memory from 0x0 to 0x2000_0000).

The Cache controller handles both command instructions and data, it is an unified cache:

Atmel

L1 data cache size set to 2 Kbytes

L1 cache line is 16 Bytes

L1 cache integrates 32 bits bus master interface
Unified 4-way set associative cache architecture

SAMAE [DATASHEET] 28

11157C-ATARM-25-Jul-13

9. Real-time Event Management
The events generated by peripherals are designed to be directly routed to peripherals managing/using these
events without processor intervention. Peripherals receiving events contain logic by which to select the one

required.

9.1 Embedded Characteristics
» Timers, PWM, 10 peripherals generate event triggers which are directly routed to event managers such as
AFEC or DACC, for example, to start measurement/conversion without processor intervention.

* UART, USART, SPI, TWI, PWM, HSMCI, AES, AFEC, DACC, PIO, TIMER (capture mode) also generate event
triggers directly connected to Peripheral DMA Controller (PDC) for data transfer without processor intervention.

« Parallel capture logic is directly embedded in PIO and generates trigger event to Peripheral DMA Controller to

capture data without processor intervention.

* PWM security events (faults) are in combinational form and directly routed from event generators (ADC, ACC,
PMC, TIMER) to PWM module.

* PWM output comparators generate events directly connected to TIMER.

» PMC security event (clock failure detection) can be programmed to switch the MCK on reliable main RC internal
clock without processor intervention.

SAMAE [DATASHEET] 29
AtmeL 11157C-ATARM-25-Jul-13

9.2 Real-time Event Mapping List

Table 9-1.

Real-time Event Mapping List

Event Generator

Event Manager

Function

IO (WKUPO/1)

General-purpose Backup Register
(GPBR)

Security / Immediate GPBR clear (asynchronous) on
Tamper detection through WKUPO/1 10 pins.

Power Management Controller

Safety / Automatic Switch to Reliable Main RC oscillator

(PMC) PMC in case of Main Crystal Clock Failure
. . Safety / Puts the PWM Outputs in Safe Mode (Main
PMC Pulse Width Modulation (PWM) Crystal Clock Failure Detection)
Analog Comparator Controller Safety / Puts the PWM Outputs in Safe Mode
PWM
(ACC) (Overcurrent sensor, ...)
Analog-Front-End-Controller PWM Safety / Puts the PWM Outputs in Safe Mode
(AFECO0/1) (Overspeed, Overcurrent detection ...)
Safety / Puts the PWM Outputs in Safe Mode
Timer Counter (TC) PWM (Overspeed detection through TIMER Quadrature
Decoder)
Safety / Puts the PWM Outputs in Safe Mode (General-
10 PWM
purpose Fault Inputs)
10 parallel Capture (PC) PCis embedd_ed in P10 (Capture Image from Sensor
directly to System Memory)
IO (ADTRG) AFEC Trigger for measurement. Selection in ADC module
TC Output O AFEC Trigger for measurement. Selection in ADC module
TC Output 1 AFEC Trigger for measurement. Selection in ADC module
TC Output 2 AFEC Trigger for measurement. Selection in ADC module

PWM Output Compare Line 0

TC Input (A/B) O

Allows delay measurement between PWM outputs and
TC inputs externally connected to power transistor
bridge driver.

PWM Output Compare Line 1

TC Input (A/B) 1

Allows delay measurement between PWM outputs and
TC inputs externally connected to power transistor
bridge driver

PWM Output Compare Line 2

TC Input (A/B) 2

Allows delay measurement between PWM outputs and
TC inputs externally connected to power transistor
bridge driver

PWM Event Line 0

AFEC

Trigger for measurement. PWM contains a
programmable delay for this trigger.

PWM Event Line 1

AFEC

Trigger for measurement. PWM contains a
programmable delay for this trigger.

DACC (Digital-Analog Converter

IO (DATRG) Controller) Trigger for conversion. Selection in DAC module
TC Output O DACC Trigger for conversion. Selection in DAC module
TC Output 1 DACC Trigger for conversion. Selection in DAC module
TC Output 2 DACC Trigger for conversion. Selection in DAC module
PWM Event Line 0 DACC Trigger for conversion. Selection in DAC module
PWM Event Line 1 DACC Trigger for conversion. Selection in DAC module

Atmel

SAMAE [DATASHEET] 30

11157C-ATARM-25-Jul-13

10.

The System Controller is a set of peripherals, which allow handling of key elements of the system, such as power, resets,

System Controller

clocks, time, interrupts, watchdog, etc.
See the system controller block diagram in Figure 10-1 on page 31.

Figure 10-1. System Controller Block Diagram

VDDIO

XIN32

XOuT32

VDDIO

NRST

XIN

XouTt

VDDPLL

L]

VDDIN

Note1: FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins but are not physical

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

VROFF controlled VDDOUT
Software Controlled
Voltage Regulator e |
Zero-Power 1
Power-On Reset I
AFECO (front-end) |——— | AFEIx 1
Supply ADC+DAC D . :
sm_on = SMSMPL controlled ‘ Controller AFECO (front-end) 1
| — ADC+DAC || AFEOX i
Programmable ACC (front-end) 1
Supply sm_in 1
Monitor = DAC (front-end) || pAcx 1
1
< WKUPO - WKUP15 :
General Purpose 1
Backup Registers VDDIO 1
1
PIOAB/C 1
rtc_alarm
SLCK RTC = Input/ Output Buf PIOx I
— 1
1
_ I—D VDDIO 1
t_al
SLCK RTT rtt_alarm - 1
|| UsB 1
1
on = XTALSEL 1
vddcore_nreset VDDCORE 1
Xtal 32 kHz DAIALSER ﬁ I‘ R N
Oscillator Slow Clock
SLCK bodcore_on = ! BODDIS Brownout
Embedded bodcore_in Detector
32kHzRC | oh = I XTALSEL supc_interrupt
Oscillator
€| SRAM [
Backup Power Supply
Peripherals m—
[—> proc_nreset
vddcore_nreset |plieed Cortex-M)
—> Reset —> periph_nreset Processor <P Matrix ¢
Controller .
—> ice_nreset
‘ > Peripheral
Bridge
FSTTO - FSTT15 (Note 1)
> <P Flash frmed
Embedded SLCK
4/8/12 MHz N
RC Main Clock
Oscillator MAINCK Master Clock
Power MCK
3-20MHz Management
XTAL Oscillator Controller
SLCK Waschdog
Timer
MAINCK PLLACK
— > PLA Embedded
32 kHzRC .
Oscillator Reinforced
Safety
Embedded Watchdog
4/8/12 MHz Timer
RC Oscillator Core Power Supply

10.1

10.2

10.2.1

10.2.2

10.2.3

10.3

System Controller and Peripherals Mapping
Please refer to Section 7-1 “SAM4E Product Mapping” on page 23.

Power-on-Reset, Brownout and Supply Monitor

The SAMAE device embeds three features to monitor, warn and/or reset the chip:
» Power-on-Reset on VDDIO

* Brownout Detector on VDDCORE

* Supply Monitor on VDDIO

Power-on-Reset

The Power-on-Reset monitors VDDIO. It is always activated and monitors voltage at start up but also during power down.
If VDDIO goes below the threshold voltage, the entire chip is reset. For more information, refer to the “Electrical
Characteristics” section of the datasheet.

Brownout Detector on VDDCORE

The Brownout Detector monitors VDDCORE. It is active by default. It can be deactivated by software through the Supply
Controller (SUPC_MR). It is especially recommended to disable it during low-power modes such as wait or sleep modes.

If VDDCORE goes below the threshold voltage, the reset of the core is asserted. For more information, refer to the
“Supply Controller (SUPC)” and “Electrical Characteristics” sections of the datasheet.

Supply Monitor on VDDIO

The Supply Monitor monitors VDDIO. It is not active by default. It can be activated by software and is fully programmable
with 16 steps for the threshold (between 1.6V to 3.4V). It is controlled by the Supply Controller (SUPC). A sample mode
is possible. It allows to divide the supply monitor power consumption by a factor of up to 2048. For more information,
refer to the SUPC and Electrical Characteristics sections of the datasheet.

Reset Controller

The Reset Controller is based on a Power-on-Reset cell, and a Supply Monitor on VDDCORE.

The Reset Controller is capable to return to the software the source of the last reset, either a general reset, a wake-up
reset, a software reset, a user reset or a watchdog reset.

The Reset Controller controls the internal resets of the system and the NRST pin input/output. It is capable to shape a
reset signal for the external devices, simplifying to a minimum connection of a push-button on the NRST pin to implement
a manual reset.
The configuration of the Reset Controller is saved as supplied on VDDIO.

e Multiplexing of four peripheral functions per I/O Line

e Foreach I/O Line (whether assigned to a peripheral or used as general-purpose 1/0)

e Input change interrupt
Configurable peripheral event generator
Programmabile glitch filter
Programmable debouncing filter
Multi-drive option enables driving in open drain
Programmable pull-up on each 1/O line
Pin data status register, supplies visibility of the level on the pin at any time
Additional interrupt modes on a programmable event: rising edge, falling edge, low level or high level
e Lock of the configuration by the connected peripheral

e Synchronous output, provides set and clear of several I/O lines in a single write
e Write Protect Registers

Atmel SAMAE [DATASHEET] 32

11157C-ATARM-25-Jul-13

e Programmable Schmitt trigger inputs
e Parallel capture mode:
e Can be used to interface a CMOS digital image sensor (f.ex.)
e One clock, 8-bit parallel data and two data enable on 1/O lines
e Data can be sampled one time out of two (for chrominance sampling only)
[]

Supports connection of one Peripheral DMA Controller channel (PDC) which offers buffer reception without
processor intervention

Atmel SAMAE [DATASHEET] 33

11157C-ATARM-25-Jul-13

11. Peripherals

111

Peripheral Identifiers

Table 11-1 defines the Peripheral Identifiers of the SAM4E device. A peripheral identifier is required for the control of the
peripheral interrupt with the Nested Vectored Interrupt Controller and control of the peripheral clock with the Power

Management Controller.

Table 11-1. Peripheral Identifiers

Instance NVIC PMC Instance Description

Instance ID Name Interrupt Clock Control

0 SUPC X Supply Controller

1 RSTC X Reset Controller

2 RTC X Real-time Clock

3 RTT X Real-time Timer

4 WDT X Watchdog/Dual Watchdog Timer

5 PMC X Power Management Controller

6 EFC X Enhanced Embedded Flash Controller

7 UARTO X X UART O

8 SMC X Static Memory Controller

9 PIOA X X Parallel I/O Controller A

10 PIOB X X Parallel 1/0 Controller B

11 PIOC X X Parallel I/O Controller C

12 PIOD X X Parallel I/O Controller D

13 PIOE X X Parallel 1/0 Controller E

14 USARTO X X USART 0

15 USART1 X X USART 1

16 HSMCI X X Multimedia Card Interface

17 TWIO X X Two-wire Interface O

18 TWI1 X X Two-wire Interface 1

19 SPI X X Serial Peripheral Interface

20 DMAC X X DMAC

21 TCO X X Timer/Counter 0

22 TC1 X X Timer/Counter 1

23 TC2 X X Timer/Counter 2

24 TC3 X X Timer/Counter 3

25 TC4 X X Timer/Counter 4

26 TC5 X X Timer/Counter 5

27 TC6 X X Timer/Counter 6

28 TC7 X X Timer/Counter 7

29 TC8 X X Timer/Counter 8

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

34

Table 11-1. Peripheral Identifiers (Continued)

Instance NVIC PMC Instance Description
Instance ID Name Interrupt Clock Control
30 AFECO X X Analog Front End O
31 AFEC1 X X Analog Front End 1
32 DACC X X Digital to Analog Converter
33 ACC X X Analog Comparator
FPU signals: FPIXC, FPOFC, FPUFC, FPIOC, FPDZC,
34 ARM X FPIDC, FPIXC
35 UDP X X USB DEVICE
36 PWM X X PWM
37 CANO X X CANO
38 CAN1 X X CAN1
39 AES X X AES
40 Reserved
41 Reserved
42 Reserved
43 Reserved
44 EMAC EMAC
45 UART1 X X UART
46 Reserved

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

35

11.2 Peripheral Signal Multiplexing on I/O Lines

The SAM4E device features five PIO Controllers on 144-pin versions (PIOA, PIOB, PIOC, PIOD and PIOE) that multiplex
the 1/O lines of the peripheral set.

The SAM4E PIO Controllers control up to 32 lines. Each line can be assigned to one of three peripheral functions: A, B
or C. The multiplexing tables in the following paragraphs define how the 1/O lines of the peripherals A, B and C are
multiplexed on the PIO Controllers. The column “Comments” has been inserted in this table for the user’'s own
comments; it may be used to track how pins are defined in an application.

Note that some peripheral functions which are output only, might be duplicated within the tables.

Atmel SAMAE [DATASHEET] 36

11157C-ATARM-25-Jul-13

11.2.1 PIO Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)

I/O Line System
Peripheral A Peripheral B Peripheral C Extra Function Function Comments

PAO PWMHO TIOAO Al7 WKUPO)
PA1 PWMH1 TIOBO Al18 WKUP1 @
PA2 PWMH2 DATRG WKUP2 @
PA3 TWDO NPCS3
PA4 TWCKO TCLKO WKUP3
PAS5 NPCS3 URXD1 WKUP4
PA6 PCKO UTXD1
PA7 PWMH3 XIN32 @
PA8 AFEO_ADTRG WKUP5 XOUT32
PA9 URXDO NPCS1 PWMFIO WKUP6 @
PA10 UTXDO NPCS2
PA11 NPCSO0 PWMHO WKUP7)
PA12 MISO PWMH1 @
PA13 MOSI PWMH2 @
PA14 SPCK PWMH3 WKUPS8 @
PA15 TIOA1 PWML3 WKUP14/PIODCEN1 @
PA16 TIOB1 PWML2 WKUP15/PIODCEN2 @
PA17 PCK1 PWMH3 AFEO_ADO @
PA18 PCK2 Al4 AFEO_AD1 @
PA19 PWMLO A15 AFEO_AD2/WKUP9 @
PA20 PWML1 Al6 AFEO_AD3/WKUP10 @
PA21 RXD1 PCK1 AFE1_AD2
PA22 TXD1 NPCS3 NCS2 AFE1_AD3 @
PA23 SCK1 PWMHO A19 PIODCCLK @
PA24 RTS1 PWMH1 A20 PIODCO)
PA25 CTS1 PWMH2 A23 PIODC1 @
PA26 DCD1 TIOA2 MCDA2 PIODC2
PA27 DTR1 TIOB2 MCDA3 PIODC3
PA28 DSR1 TCLK1 MCCDA PIODC4
PA29 RI1 TCLK2 MCCK PIODC5
PA30 PWML2 NPCS2 MCDAO WKUP11/ PIODC6 @
PA31 NPCS1 PCK2 MCDA1 PIODC7

Note: 1. Used by peripheral: defined as Bidirectional 0.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

37

11.2.2 PIO Controller B Multiplexing

Table 11-3. Multiplexing on PIO Controller B (PIOB)

1/0 Line System
Peripheral A Peripheral B Peripheral C Extra Function Function Comments
AFEQ_AD4/ @
PBO PWMHO RXDO RTCOUTO
AFEO_AD5/
_ €
PB1 PWMH1 TXDO RTCOUTL
AFE1_ADO/
_ @
PB2 CANTXO0 NPCS2 CTSO WKUP12
PB3 CANRXO PCK2 RTSO AFE1_AD1 @
PB4 TWD1 PWMH2 TDI @
TDO/
€
PB5 TWCK1 PWMLO WKUP13 TRACESWO
PB6 TMS/SWDIO
PB7 TCK/SWCLK
PB8 XOUT
PB9 XIN
PB10 DDM
PB11 DDP
PB12 PWML1 ERASE @
PB13 PWML2 PCKO SCKO DACO @
PB14 NPCS1 PWMH3 DAC1 @
Note: 1. Used by peripheral: defined as Bidirectional 10.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

38

11.2.3 PIO Controller C Multiplexing

Table 11-4. Multiplexing on PIO Controller C (PIOC)

1/0O Line System
Peripheral A Peripheral B Peripheral C Extra Function Function Comments
PCO DO PWMLO AFEQ_AD14 144-pin version®
PC1 D1 PWML1 AFE1_ADA4 144-pin version®
PC2 D2 PWML2 AFE1_AD5 144-pin version®
PC3 D3 PWML3 AFE1_AD6 144-pin version®
PC4 D4 NPCS1 AFE1_AD7 144-pin version®
PC5 D5 TIOAG 144-pin version®
PC6 D6 TIOB6 144-pin version®
PC7 D7 TCLK6 144-pin version®
PC8 NWE TIOA7 144-pin version®
PC9 NANDOE TIOB7 144-pin version®
PC10 NANDWE TCLK7 144-pin version®
PC11 NRD TIOA8 144-pin version®
PC12 NCS3 TIOBS CANRX1 AFEO_ADS8 144-pin version®
PC13 NWAIT PWMLO AFEOQ_AD6 144-pin version®
PC14 NCSO0 TCLKS 144-pin version®
PC15 NCS1 PWML1 CANTX1 AFEO_AD7 144-pin version®
PC16 NA/IA\\IZDlALE 144-pin version®
PC17 NAﬁl%)zéLE 144-pin version®
PC18 A0 PWMHO 144-pin version®
PC19 Al PWMH1 144-pin version®
PC20 A2 PWMH?2 144-pin version®
PC21 A3 PWMH3 144-pin version®
PC22 A4 PWML3 144-pin version®
PC23 A5 TIOA3 144-pin version®
PC24 A6 TIOB3 144-pin version®
PC25 A7 TCLK3 144-pin version®
PC26 A8 TIOA4 AFEO_AD12 144-pin version®
PC27 A9 TIOB4 AFEO_AD13 144-pin version®
PC28 A10 TCLK4 144-pin version™
PC29 A1l TIOA5 AFEO_AD9 144-pin version®
PC30 A12 TIOB5 AFEO_AD10 144-pin version®
PC31 A13 TCLK5 AFEO_AD11 144-pin version®
Note: 1. Used by peripheral: defined as Bidirectional 10.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

39

11.2.4 PIO Controller D Multiplexing

Table 11-5. Multiplexing on PIO Controller D (PIOD)

I/O Line System
Peripheral A Peripheral B Peripheral C Extra Function Function Comments

PDO GTXCCI;/(GREF
PD1 GTXEN
PD2 GTXO0
PD3 GTX1
PD4 GCRXSS\\///GR
PD5 GRXO0
PD6 GRX1
PD7 GRXER
PD8 GMDC
PD9 GMDIO
PD10 GCRS
PD11 GRX2
PD12 GRX3
PD13 GCOL
PD14 GRXCK
PD15 GTX2
PD16 GTX3
PD17 GTXER
PD18 NCS1
PD19 NCS3
PD20 PWMHO
PD21 PWMH1
PD22 PWMH2
PD23 PWMH3
PD24 PWMLO
PD25 PWML1
PD26 PWML2
PD27 PWML3
PD28
PD29
PD30
PD31

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

40

11.2.5 PIO Controller E Multiplexing

Table 11-6. Multiplexing on PIO Controller E (PIOE)

I/O Line System
Peripheral A Peripheral B Peripheral C Extra Function Function Comments
PEO 144-pin version
PE1 144-pin version
PE2 144-pin version
PE3 144-pin version
PE4 144-pin version
PES5 144-pin version

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

41

Atmel SAMAE [DATASHEET] 42

11157C-ATARM-25-Jul-13

12.

12.1

12.11

12.1.2

ARM Cortex-M4

Description

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers
significant benefits to developers, including outstanding processing performance combined with fast interrupt handling,
enhanced system debug with extensive breakpoint and trace capabilities, efficient processor core, system and
memories, ultra-low power consumption with integrated sleep modes, and platform security robustness, with integrated
memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture,
making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an
efficient instruction set and extensively optimized design, providing high-end processing hardware including IEEE754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication and multiply-with-
accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightly-coupled system
components that reduce processor area while significantly improving interrupt handling and system debug capabilities.
The Cortex-M4 processor implements a version of the Thumb® instruction set based on Thumb-2 technology, ensuring
high code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional
performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M4 processor closely integrates a configurable NVIC, to deliver industry-leading interrupt performance. The
NVIC includes a non-maskable interrupt (NMI), and provides up to 256 interrupt priority levels. The tight integration of the
processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt
latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-
multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the
ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that
enables the entire device to be rapidly powered down while still retaining program state.

System Level Interface

The Cortex-M4 processor provides multiple interfaces using AMBA® technology to provide high speed, low latency
memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster
peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has a Memory Protection Unit (MPU) that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis.
Such requirements are becoming critical in many embedded applications such as automotive.

Integrated Configurable Debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the
processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for
microcontrollers and other small package devices.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a
profiling unit. To enable simple and cost-effective profiling of the system events these generate, a Serial Wire Viewer
(SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The Flash Patch and Breakpoint Unit (FPB) provides up to 8 hardware breakpoint comparators that debuggers can use.
The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE memory
region. This enables applications stored on a non-erasable, ROM-based microcontroller to be patched if a small
programmable memory, for example flash, is available in the device. During initialization, the application in ROM detects,
from the programmable memory, whether a patch is required. If a patch is required, the application programs the FPB to
remap a humber of addresses. When those addresses are accessed, the accesses are redirected to a remap table
specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

Atmel SAMAE [DATASHEET] 43

11157C-ATARM-25-Jul-13

12.2 Embedded Characteristics

Tight integration of system peripherals reduces area and development costs
Thumb instruction set combines high code density with 32-bit performance
IEEE754-compliant single-precision FPU

Code-patch ability for ROM system updates

Power control optimization of system components

Integrated sleep modes for low power consumption

Fast code execution permits slower processor clock or increases sleep mode time
Hardware division and fast digital-signal-processing oriented multiply accumulate
Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications
Memory Protection Unit (MPU) for safety-critical applications

Extensive debug and trace capabilities:

e Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and
code profiling.

Atmel SAMAE [DATASHEET] 44

11157C-ATARM-25-Jul-13

12.3 Block Diagram

Figure 12-1. Typical Cortex-M4 Implementation

Cortex-M4
Processor FPU
NVIC (4P
Processor
Core
Debug Memor Serial
* Access ProtectionyUnit Wire
Port e 3 Viewer
Flash Data
Patch \Watchpoints
Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A
v v
SAM4E [DATASHEET)] 45
Atmel

11157C-ATARM-25-Jul-13

12.4 Cortex-M4 Models

12.4.1 Programmers Model

This section describes the Cortex-M4 programmers model. In addition to the individual core register descriptions, it
contains information about the processor modes and privilege levels for software execution and stacks.

12.4.1.1 Processor Modes and Privilege Levels for Software Execution

The processor modes are:
e Thread mode
Used to execute application software. The processor enters the Thread mode when it comes out of reset.
e Handler mode
Used to handle exceptions. The processor returns to the Thread mode when it has finished exception processing.
The privilege levels for software execution are:
e Unprivileged
The software:
e Has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
e Cannot access the System Timer, NVIC, or System Control Block
e Might have a restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.
e Privileged

The software can use all the instructions and has access to all resources. Privileged software executes at the
privileged level.

In Thread mode, the CONTROL register controls whether the software execution is privileged or unprivileged, see
“CONTROL Register” . In Handler mode, software execution is always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software execution in
Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to
privileged software.

12.4.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last stacked item in
memory When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item
to the new memory location. The processor implements two stacks, the main stack and the process stack, with a pointer
for each held in independent registers, see “Stack Pointer” .

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the process stack, see
“CONTROL Register” .

In Handler mode, the processor always uses the main stack.

The options for processor operations are:

Table 12-1. Summary of processor mode, execution privilege level, and stack use options

Processor Used to Privilege Level for Stack Used
Mode Execute Software Execution
C Privileged or Main stack or
Thread Applications unprivileged ™ process stack®
Exception - .
Handler handlers Always privileged Main stack

Note: 1. See “CONTROL Register”.

Atmel SAMAE [DATASHEET] 46

11157C-ATARM-25-Jul-13

12.4.1.3 Core Registers

Figure 12-2. Processor Core Regist

8 RO
R1
R2
R3
R4
R5
R6
R7
R8

R9
High registers R10

Low registers

R11
R12

ers
—

General-purpose registers

N—
Stack Pointer SP (R13)

PSP* ” MSP* *Banked version of SP

Link Register LR (R14)
Program Counter PC (R15)

PSR
PRIMASK
FAULTMASK
BASEPRI
CONTROL

Atmel

Program status register

Exception mask registers Special registers

CONTROL register

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

Table 12-2. Core Processor Registers

Register Name Access® Required Reset
Privilege®
General-purpose registers RO-R12 Read-write Either Unknown
Stack Pointer MSP Read-write Privileged See description
Stack Pointer PSP Read-write Either Unknown
Link Register LR Read-write Either OXFFFFFFFF
Program Counter PC Read-write Either See description
Program Status Register PSR Read-write Privileged 0x01000000
Application Program Status Register APSR Read-write Either 0x00000000
Interrupt Program Status Register IPSR Read-only Privileged 0x00000000
Execution Program Status Register EPSR Read-only Privileged 0x01000000
Priority Mask Register PRIMASK Read-write Privileged 0x00000000
Fault Mask Register FAULTMASK Read-write Privileged 0x00000000
Base Priority Mask Register BASEPRI Read-write Privileged 0x00000000
CONTROL register CONTROL Read-write Privileged 0x00000000

Notes: 1. Describes access type during program execution in thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.
12.4.1.4 General-purpose Registers

R0O-R12 are 32-bit general-purpose registers for data operations.

12.4.1.5 Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the stack pointer to
use:

e 0= Main Stack Pointer (MSP). This is the reset value.
e 1 =Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

12.4.1.6 Link Register
The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and exceptions. On
reset, the processor loads the LR value OxFFFFFFFF.

12.4.1.7 Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the processor loads the
PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at
reset and must be 1.

Atmel SAMAE [DATASHEET] 48

11157C-ATARM-25-Jul-13

12.4.1.8 Program Status Register

Name: PSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N Z C \Y | Q | ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICIIT - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The Program Status Register (PSR) combines:
* Application Program Status Register (APSR)
* Interrupt Program Status Register (IPSR)
» Execution Program Status Register (EPSR).
These registers are mutually exclusive bitfields in the 32-bit PSR.

The PSR register accesses these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:

» Read of all the registers using PSR with the MRS instruction
» Write to the APSR N, Z, C, V and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

Name Access Combination

PSR Read-write®™® APSR, EPSR, and IPSR
IEPSR Read-only EPSR and IPSR

IAPSR Read-write® APSR and IPSR
EAPSR | Read-write® APSR and EPSR

Notes: 1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits

See the instruction descriptions “MRS” and “MSR” for more information about how to access the program status registers.

Atmel SAMAE [DATASHEET] 49

11157C-ATARM-25-Jul-13

12.4.1.9 Application Program Status Register

Name: APSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

I N I z I c v I Q I - |
23 22 21 20 19 18 17 16

| - | GE[3:0] |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The APSR contains the current state of the condition flags from previous instruction executions.

N: Negative Flag

o

: Operation result was positive, zero, greater than, or equal

=

: Operation result was negative or less than.

Z: Zero Flag
: Operation result was not zero

= O

: Operation result was zero.

» C: Carry or Borrow Flag
Carry or borrow flag:
0: Add operation did not result in a carry bit or subtract operation resulted in a borrow bit

1: Add operation resulted in a carry bit or subtract operation did not result in a borrow bit.

» V: Overflow Flag
0: Operation did not result in an overflow

1: Operation resulted in an overflow.

* Q: DSP Overflow and Saturation Flag

Sticky saturation flag:

0: Indicates that saturation has not occurred since reset or since the bit was last cleared to zero
1: Indicates when an SSAT or USAT instruction results in saturation.

This bit is cleared to zero by software using an MRS instruction.

» GE[19:16]: Greater Than or Equal Flags
See “SEL” for more information.

Atmel SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

50

12.4.1.10 Interrupt Program Status Register

Name: IPSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - ISR_NUMBER |
7 6 5 4 3 2 1 0

| ISR_NUMBER |

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR).

* ISR_NUMBER: Number of the Current Exception
0 = Thread mode

1 = Reserved

2 =NMI

3 = Hard fault

4 = Memory management fault
5 = Bus fault

6 = Usage fault

7-10 = Reserved

11 = SvCall

12 = Reserved for Debug

13 = Reserved

14 = PendSV

15 = SysTick

16 = IRQO

50 = IRQ47

See “Exception Types” for more information.

Atmel SAMAE [DATASHEET] 51

11157C-ATARM-25-Jul-13

12.4.1.11 Execution Program Status Register

Name: EPSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - ICIIT T |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| ICINT - |
7 6 5 4 3 2 1 0

The EPSR contains the Thumb state bit, and the execution state bits for either the If-Then (IT) instruction, or the Interruptible-
Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction.

Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write
the EPSR using the MSR instruction in the application software are ignored. Fault handlers can examine the EPSR value in the
stacked PSR to indicate the operation that is at fault. See “Exception Entry and Return”

* ICI: Interruptible-continuable Instruction
When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH,
or VPOP instruction, the processor:
— Stops the load multiple or store multiple instruction operation temporarily
— Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:
— Returns to the register pointed to by bits[15:12]
— Resumes the execution of the multiple load or store instruction.
When the EPSR holds the ICI execution state, bits[26:25,11:10] are zero.

e |T: If-Then Instruction
Indicates the execution state bits of the IT instruction.

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block is conditional. The con-
ditions for the instructions are either all the same, or some can be the inverse of others. See “IT” for more information.

e T: Thumb State

The Cortex-M4 processor only supports the execution of instructions in Thumb state. The following can clear the T bit to O:
— Instructions BLX, BX and POP{PC}
— Restoration from the stacked xPSR value on an exception return
— Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is O results in a fault or lockup. See “Lockup” for more information.

Atmel SAMAE [DATASHEET] 52

11157C-ATARM-25-Jul-13

12.4.1.12 Exception Mask Registers

The exception mask registers disable the handling of exceptions by the processor. Disable exceptions where they might
impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to change the value
of PRIMASK or FAULTMASK. See “MRS” , “MSR”, and “CPS” for more information.

12.4.1.13 Priority Mask Register

Name: PRIMASK

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - PRIMASK |

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

« PRIMASK
0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

Atmel SAMAE [DATASHEET] 53

11157C-ATARM-25-Jul-13

12.4.1.14 Fault Mask Register

Name: FAULTMASK
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FAULTMASK |

The FAULTMASK register prevents the activation of all exceptions except for Non-Maskable Interrupt (NMI).

* FAULTMASK

0: No effect.

1: Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI handler.

Atmel SAMAE [DATASHEET] 54

11157C-ATARM-25-Jul-13

12.4.1.15 Base Priority Mask Register

Name: BASEPRI

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| BASEPRI |

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it pre-
vents the activation of all exceptions with same or lower priority level as the BASEPRI value.

* BASEPRI

Priority mask bits:

0x0000 = No effect.

Nonzero = Defines the base priority for exception processing.

The processor does not process any exception with a priority value greater than or equal to BASEPRI.

This field is similar to the priority fields in the interrupt priority registers. The processor implements only bits[7:4] of this field,
bits[3:0] read as zero and ignore writes. See “Interrupt Priority Registers” for more information. Remember that higher priority
field values correspond to lower exception priorities.

Atmel SAMAE [DATASHEET] 55

11157C-ATARM-25-Jul-13

12.4.1.16 CONTROL Register

Name: CONTROL

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | FPCA | SPSEL | nPRIV |

The CONTROL register controls the stack used and the privilege level for software execution when the processor is in Thread
mode and indicates whether the FPU state is active.

» FPCA: Floating-point Context Active

Indicates whether the floating-point context is currently active:
0: No floating-point context active.

1: Floating-point context active.

The Cortex-M4 uses this bit to determine whether to preserve the floating-point state when processing an exception.

» SPSEL: Active Stack Pointer
Defines the current stack:

0: MSP is the current stack pointer.
1: PSP is the current stack pointer.

In Handler mode, this bit reads as zero and ignores writes. The Cortex-M4 updates this bit automatically on exception return.

* nPRIV: Thread Mode Privilege Level
Defines the Thread mode privilege level:
0: Privileged.

1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer bit of the CONTROL reg-
ister when in Handler mode. The exception entry and return mechanisms update the CONTROL register based on the
EXC_RETURN value.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack, and the kernel and excep-
tion handlers use the main stack.

By default, the Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP, either:
* Use the MSR instruction to set the Active stack pointer bit to 1, see “MSR”, or
» Perform an exception return to Thread mode with the appropriate EXC_RETURN value, see Table 12-10.

Note: When changing the stack pointer, the software must use an ISB instruction immediately after the MSR instruction.
This ensures that instructions after the ISB execute using the new stack pointer. See “ISB” .

Atmel SAMAE [DATASHEET] 56

11157C-ATARM-25-Jul-13

12.4.1.17 Exceptions and Interrupts

The Cortex-M4 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt
Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The
processor uses the Handler mode to handle all exceptions except for reset. See “Exception Entry” and “Exception
Return” for more information.

The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” for more information.

12.4.1.18 Data Types

The processor supports the following data types:
e 32-bit words
e 16-bit halfwords
e 8-bit bytes
e The processor manages all data memory accesses as little-endian. Instruction memory and Private Peripheral Bus
(PPB) accesses are always little-endian. See “Memory Regions, Types and Attributes” for more information.

12.4.1.19 Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex-M4 microcontroller system, the Cortex Microcontroller Software Interface Standard (CMSIS) defines:
e A common way to:
e Access peripheral registers
e Define exception vectors
e The names of:
e The registers of the core peripherals
e The core exception vectors
e A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M4 processor.

The CMSIS simplifies the software development by enabling the reuse of template code and the combination of CMSIS-
compliant software components from various middleware vendors. Software vendors can expand the CMSIS to include
their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the CMSIS functions
that address the processor core and the core peripherals.

Note: This document uses the register short names defined by the CMSIS. In a few cases, these differ from the archi-
tectural short names that might be used in other documents.

The following sections give more information about the CMSIS:
e Section 12.5.3 "Power Management Programming Hints”
e Section 12.6.2 "CMSIS Functions”

e Section 12.8.2.1 "NVIC Programming Hints” .

Atmel SAMAE [DATASHEET] 57

11157C-ATARM-25-Jul-13

12.4.2 Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The
processor has a fixed memory map that provides up to 4GB of addressable memory.

Figure 12-3. Memory Map

OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
PrlvatebrLe;rlpheral 1.0MB
0xE000 0000
0x DFFFFFFF
External device 1.0GB
0xA0000000
OX9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32 MB Bit band alias
0x60000000
0x42000000 OX5FFFFFFF
Ox400FFEEF — Peripheral 0.5GB
it Band region
0x40000000 0x40000000
O0x23FFFFFF Ox3FFFFFFF
32 MB Bit band alias SRAM 0.5G8B
0x20000000
0x22000000 OX1FFFFFFF
Code 0.5GB
Ox200FFFFF - -
ox20000000 L1 MBBitBandregion | 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data, see
“Bit-banding” .

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers.

This memory mapping is generic to ARM Cortex-M4 products. To get the specific memory mapping of this product, refer
to the Memories section of the datasheet.

Atmel SAMAE [DATASHEET] 58

11157C-ATARM-25-Jul-13

12.4.2.1 Memory Regions, Types and Attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined
memory type, and some regions have additional memory attributes. The memory type and attributes determine the
behavior of accesses to the region.

Memory Types
e Normal
The processor can re-order transactions for efficiency, or perform speculative reads.
e Device

The processor preserves transaction order relative to other transactions to Device or Strongly-ordered memory.

e Strongly-ordered
The processor preserves transaction order relative to all other transactions.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory system can buffer a
write to Device memory, but must not buffer a write to Strongly-ordered memory.

Additional Memory Attributes

e Shareable
For a shareable memory region, the memory system provides data synchronization between bus masters in a
system with multiple bus masters, for example, a processor with a DMA controller.
Strongly-ordered memory is always shareable.
If multiple bus masters can access a non-shareable memory region, the software must ensure data coherency
between the bus masters.

e Execute Never (XN)
Means the processor prevents instruction accesses. A fault exception is generated only on execution of an
instruction executed from an XN region.

12.4.2.2 Memory System Ordering of Memory Accesses

For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that
the order in which the accesses complete matches the program order of the instructions, providing this does not affect
the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses
completing in program order, the software must insert a memory barrier instruction between the memory access
instructions, see “Software Ordering of Memory Accesses” .

However, the memory system does guarantee some ordering of accesses to Device and Strongly-ordered memory. For
two memory access instructions A1l and A2, if A1 occurs before A2 in program order, the ordering of the memory
accesses is described below.

Table 12-3. Ordering of the Memory Accesses Caused by Two Instructions

A2 Device Access Strongly-
Al Normal ordered
Access Non-shareable Shareable Access
Normal Access - - - -
Device access, non-
— < — <
shareable
Device access, shareable - - < <
Strongly-ordered access - < < <
Where:
- Means that the memory system does not guarantee the ordering of the accesses.
< Means that accesses are observed in program order, that is, Al is always observed
before A2.
SAM4E [DATASHEET)] 59
Atmel

11157C-ATARM-25-Jul-13

12.4.2.3 Behavior of Memory Accesses

The behavior of accesses to each region in the memory map is:

Table 12-4. Memory Access Behavior

Address Range Memory Region Memory XN | Description
Type

Executable region for program code. Data can also be

0x00000000 - OX1FFFFFFF | Code Normal® | -
put here.

Executable region for data. Code can also be put here.
0x20000000 - Ox3FFFFFFF | SRAM Normal® | - This region includes bit band and bit band alias areas,
see Table 12-6.

This region includes bit band and bit band alias areas,

0x40000000 - OX5FFFFFFF | Peripheral Device® | XN see Table 12-6.

0x60000000 - OX9FFFFFFF | External RAM Normal® | - Executable region for data.

0xA0000000 - OXDFFFFFFF | External device Device™® XN | External Device memory

0XE0000000 - OXEOOFFFFF | Private Peripheral Bus g:;%?gg{n XN I;Siferrig;%?“mlg%ii_the NVIC, System timer, and
0xE0100000 - OxFFFFFFFF | Reserved Device®™ | XN | Reserved

Note: 1. See “Memory Regions, Types and Attributes” for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that programs always use
the Code region. This is because the processor has separate buses that enable instruction fetches and data accesses to
occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more information, see “Memory
Protection Unit (MPU)” .

Additional Memory Access Constraints For Caches and Shared Memory

When a system includes caches or shared memory, some memory regions have additional access constraints, and
some regions are subdivided, as Table 12-5 shows:

Table 12-5. Memory Region Shareability and Cache Policies

Address Range | Memory Region Memory Type Shareability Cache
Policy

0x00000000-

(5] _ (2)
OXLFFFFFFF Code Normal wT
0x20000000-

() - @)
OX3FFFFFFF SRAM Normal WBWA
0x40000000- . .

(€ - -
OXSFFFFFFF Peripheral Device
0x60000000-

@
OX7FFFFFFF WBWA
External RAM Normal® .
0x80000000-
@)
OX9FFFFFFF wT
SAMA4E [DATASHEET)] 60
Atmel

11157C-ATARM-25-Jul-13

Table 12-5. Memory Region Shareability and Cache Policies (Continued)

Address Range | Memory Region Memory Type Shareability Cache
Policy
0xA0000000-
())

OXBFFFFFFF Shareable

External device Device™ y
0xC0000000-) @
OXDFFFFFFF Non-shareable
0xE0000000- Private Peripheral 5 o))
OXEOOFFFFF Bus Strongly- ordered Shareable
0xE0100000- Vendor-specific Device ® i)
OXFFFFFFFF device

Notes: 1. See “Memory Regions, Types and Attributes” for more information.

2. WT = Write through, no write allocate. WBWA = Write back, write allocate. See the “Glossary” for more

information.

Instruction Prefetch and Branch Prediction

The Cortex-M4 processor:
e Prefetches instructions ahead of execution
e Speculatively prefetches from branch target addresses.

12.4.2.4 Software Ordering of Memory Accesses
The order of instructions in the program flow does not always guarantee the order of the corresponding memory

transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this does not affect the
behavior of the instruction sequence.

e The processor has multiple bus interfaces
e Memory or devices in the memory map have different wait states
e Some memory accesses are buffered or speculative.

“Memory System Ordering of Memory Accesses” describes the cases where the memory system guarantees the order
of memory accesses. Otherwise, if the order of memory accesses is critical, the software must include memory barrier
instructions to force that ordering. The processor provides the following memory barrier instructions:

DMB

The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent

memory transactions. See “DMB” .

DSB

The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before

subsequent instructions execute. See “DSB” .

ISB

The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory transactions is

recognizable by subsequent instructions. See “ISB” .

MPU Programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration is used by

subsequent instructions.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12.4.2.5 Bit-banding

A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions
occupy the lowest 1 MB of the SRAM and peripheral memory regions.

The memory map has two 32 MB alias regions that map to two 1 MB bit-band regions:
e Accesses to the 32 MB SRAM alias region map to the 1 MB SRAM bit-band region, as shown in Table 12-6.
e Accesses to the 32 MB peripheral alias region map to the 1 MB peripheral bit-band region, as shown in Table 12-7.

Table 12-6. SRAM Memory Bit-banding Regions

Address Memory Instruction and Data Accesses
Range Region

Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit-addressable
through bit-band alias.

0x20000000- | SRAM bit-band
O0X200FFFFF | region

0x22000000- _ _ Dat_a accesses to this'reg_ion are remapped to bit—bgnd
SRAM bit-band alias | region. A write operation is performed as read-modify-

Ox23FFFFFF write. Instruction accesses are not remapped.

Table 12-7. Peripheral Memory Bit-banding Regions

Address Memory Instruction and Data Accesses
Range Region

Direct accesses to this memory range behave as
peripheral memory accesses, but this region is also bit-
addressable through bit-band alias.

0x40000000- | peripheral bit-band
OX400FFFFF | alias

Data accesses to this region are remapped to bit-band
region. A write operation is performed as read-modify-
write. Instruction accesses are not permitted.

0x42000000- | Peripheral bit-band
Ox43FFFFFF | region

Notes: 1. A word access to the SRAM or peripheral bit-band alias regions map to a single bit in the SRAM or periph-
eral bit-band region.

2. Bit-band accesses can use byte, halfword, or word transfers. The bit-band transfer size matches the transfer
size of the instruction making the bit-band access.

The following formula shows how the alias region maps onto the bit-band region:
bit word_offset = (byte_offset x 32) + (bit_number x 4)
bit_word_addr = bit_band_base + bit_word_offset
where:
e Bit word_offset is the position of the target bit in the bit-band memory region.
Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
Bit_band_base is the starting address of the alias region.
Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.
Bit_number is the bit position, 0-7, of the targeted bit.

Figure 12-4 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band
region:
e The alias word at 0x23FFFFEO maps to bit[0] of the bit-band byte at 0x200FFFFF: 0x23FFFFEQ = 0x22000000 +
(OXFFFFF*32) + (0*4).
e The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0x200FFFFF: 0x23FFFFFC = 0x22000000 +
(OXFFFFF*32) + (7*4).
e The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000: 0x22000000 = 0x22000000 + (0*32) + (O
*4).

Atmel SAMAE [DATASHEET] 62

11157C-ATARM-25-Jul-13

e The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000: 0x2200001C = 0x22000000+ (0*32) +
(7*4).

Figure 12-4. Bit-band Mapping

32 MB alias region

| oxearrrrrc | oxearrrrrs | oxesrrrFFa | oxesFrFFFo | oxe3FFFFEC | oxesFrFFES

0x23FFFFE4 I 0x23FFFFEO I

°

°

°

| ox2200001c | ox22000018

0x22000014

0x22000010

0x2200000C

0x22000008

0x22000004 | 0x22000000 |

1 MB SRAM bit-band region

‘76543210’765432107654321076543210
T T T 1 T]
0x200FFFFF 0x200FFFFE 0x200FFFFD 0x200FFFFC
I — I — I — I —

°

°

°
765432107654321076543210‘76543210’

I | |
0x20000003
I —

I | [
0x20000002
l

I | [
0x20000001
[

I | [
0x20000000
I —

Directly Accessing an Alias Region

Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band
region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value with bit[0] set to O writes a 0 to

the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing OxFF. Writing

0x00 has the same effect as writing OxOE.

Reading a word in the alias region:

e (x00000000 indicates that the targeted bit in the bit-band region is set to 0

e 0x00000001 indicates that the targeted bit in the bit-band region is set to 1
Directly Accessing a Bit-band Region

“Behavior of Memory Accesses” describes the behavior of direct byte, halfword, or word accesses to the bit-band

regions.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12.4.2.6 Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes
0-3 hold the first stored word, and bytes 4-7 hold the second stored word. “Little-endian Format” describes how words of
data are stored in memory.

Little-endian Format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered byte, and the most
significant byte at the highest-numbered byte. For example:

Figure 12-5. Little-endian Format
Memory Register
7 0

31 2423 1615 8 7 0

Address A BO |Isbyte B3 B2 B1 BO
A+1 B1
A+2 B2

A+3 B3 | msbyte

12.4.2.7 Synchronization Primitives

The Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-blocking mechanism that
a thread or process can use to obtain exclusive access to a memory location. The software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.
A pair of synchronization primitives comprises:
A Load-exclusive Instruction, used to read the value of a memory location, requesting exclusive access to that
location.
A Store-Exclusive instruction, used to attempt to write to the same memory location, returning a status bit to a register.
If this bit is:

e 0: Itindicates that the thread or process gained exclusive access to the memory, and the write succeeds,

e 1:Itindicates that the thread or process did not gain exclusive access to the memory, and no write is performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:
e The word instructions LDREX and STREX
e The halfword instructions LDREXH and STREXH
e The byte instructions LDREXB and STREXB.
The software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.

To perform an exclusive read-modify-write of a memory location, the software must:
1. Use a Load-Exclusive instruction to read the value of the location.
2. Update the value, as required.
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location
4. Testthe returned status bit. If this bit is:
0: The read-modify-write completed successfully.
1: No write was performed. This indicates that the value returned at step 1 might be out of date. The software must
retry the read-modify-write sequence.
The software can use the synchronization primitives to implement a semaphore as follows:

Atmel SAMAE [DATASHEET] 64

11157C-ATARM-25-Jul-13

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free.
If the semaphore is free, use a Store-Exclusive instruction to write the claim value to the semaphore address.

3. Ifthe returned status bit from step 2 indicates that the Store-Exclusive instruction succeeded then the software has
claimed the semaphore. However, if the Store-Exclusive instruction failed, another process might have claimed the
semaphore after the software performed the first step.

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

e |t executes a CLREX instruction

e It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

e An exception occurs. This means that the processor can resolve semaphore conflicts between different threads.
In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the processor

e Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all global
exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX" .
12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for generation
of these instructions:

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t _ LDREXW (uint32_t *addr)

LDREXH uintl6_t __ LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t _ STREXW (uint32_t value, uint32_t *addr)
STREXH uint32_t _ STREXH (uint16_t value, uint16_t *addr)
STREXB uint32_t _ STREXB (uint8_t value, uint8_t *addr)
CLREX void __ CLREX (void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:
__Idrex((volatile char *) OxFF);

12.4.3 Exception Model

This section describes the exception model.

12.4.3.1 Exception States

Each exception is in one of the following states:
Inactive

The exception is not active and not pending.

Pending

The exception is waiting to be serviced by the processor.

Atmel SAMAE [DATASHEET] 65

11157C-ATARM-25-Jul-13

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending.
Active

An exception is being serviced by the processor but has not completed.
An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the
active state.

Active and Pending

The exception is being serviced by the processor and there is a pending exception from the same source.

12.4.3.2 Exception Types

The exception types are:
Reset

Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When
reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is
deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as
privileged execution in Thread mode.

Non Maskable Interrupt (NMI)

A non maskable interrupt (NMI) can be signalled by a peripheral or triggered by software. This is the highest priority
exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIs cannot be:
e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.
Hard Fault

A hard fault is an exception that occurs because of an error during exception processing, or because an exception
cannot be managed by any other exception mechanism. Hard Faults have a fixed priority of -1, meaning they have higher
priority than any exception with configurable priority.

Memory Management Fault (MemManage)

A Memory Management Fault is an exception that occurs because of a memory protection related fault. The MPU or the
fixed memory protection constraints determines this fault, for both instruction and data memory transactions. This fault is
used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled.

Bus Fault

A Bus Fault is an exception that occurs because of a memory related fault for an instruction or data memory transaction.
This might be from an error detected on a bus in the memory system.

Usage Fault

A Usage Fault is an exception that occurs because of a fault related to an instruction execution. This includes:
e An undefined instruction
e Anillegal unaligned access
e Aninvalid state on instruction execution
e An error on exception return.

The following can cause a Usage Fault when the core is configured to report them:
e An unaligned address on word and halfword memory access
e Adivision by zero.
SvCall

A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can
use SVC instructions to access OS kernel functions and device drivers.

Atmel SAMAE [DATASHEET] 66

11157C-ATARM-25-Jul-13

PendSV

PendSV is an interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching
when no other exception is active.

SysTick

A SysTick exception is an exception the system timer generates when it reaches zero. Software can also generate a
SysTick exception. In an OS environment, the processor can use this exception as system tick.

Interrupt (IRQ)

A interrupt, or IRQ, is an exception signalled by a peripheral, or generated by a software request. All interrupts are
asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor.

Table 12-9. Properties of the Different Exception Types

Exception Irqg Number® Exception Type Priority Vector Address Activation
Number® or Offset®

1 - Reset -3, the highest | 0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -

4 -12 Memory Configurable® | 0x00000010 Synchronous

management fault

Synchronous when

5 -11 Bus fault Configurable® | 0x00000014 precise, asynchronous
when imprecise

6 -10 Usage fault Configurable® | 0x00000018 Synchronous

7-10 - - - Reserved -

11 -5 SvCall Configurable® | 0x0000002C Synchronous

12-13 - - - Reserved -

14 -2 PendSV Configurable® | 0x00000038 Asynchronous

15 -1 SysTick Configurable® | 0x0000003C Asynchronous

16 and above | 0 and above Interrupt (IRQ) Configurable® géggg%?om and Asynchronous

Notes: 1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions
other than interrupts. The IPSR returns the Exception number, see “Interrupt Program Status Register” .

See “Vector Table” for more information
See “System Handler Priority Registers”
See “Interrupt Priority Registers”
Increasing in steps of 4.

o bk wb

For an asynchronous exception, other than reset, the processor can execute another instruction between when the
exception is triggered and when the processor enters the exception handler.

Privileged software can disable the exceptions that Table 12-9 shows as having configurable priority, see:
e “System Handler Control and State Register”
e “Interrupt Clear-enable Registers” .

For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault Handling” .

12.4.3.3 Exception Handlers

The processor handles exceptions using:

Atmel SAMAE [DATASHEET] 67

11157C-ATARM-25-Jul-13

e Interrupt Service Routines (ISRs)
Interrupts IRQO to IRQ47 are the exceptions handled by ISRs.
e Fault Handlers
Hard fault, memory management fault, usage fault, bus fault are fault exceptions handled by the fault handlers.

e System Handlers
NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions that are handled by system
handlers.

12.4.3.4 Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception vectors, for
all exception handlers. Figure 12-6 shows the order of the exception vectors in the vector table. The least-significant bit
of each vector must be 1, indicating that the exception handler is Thumb code.

Figure 12-6. Vector Table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040 -
15 -1 SysTick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 Svcall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -11 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004 —
Initial SP value

0x0000

On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the SCB_VTOR register
to relocate the vector table start address to a different memory location, in the range 0x00000080 to Ox3FFFFF80, see
“Vector Table Offset Register” .

12.4.3.5 Exception Priorities

As Table 12-9 shows, all exceptions have an associated priority, with:
e Alower priority value indicating a higher priority
e Configurable priorities for all exceptions except Reset, Hard fault and NMI.

Atmel SAMAE [DATASHEET] 68

11157C-ATARM-25-Jul-13

If the software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For
information about configuring exception priorities see “System Handler Priority Registers” , and “Interrupt Priority
Registers” .

Note: Configurable priority values are in the range 0-15. This means that the Reset, Hard fault, and NMI exceptions,
with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher

priority than IRQ[O]. If both IRQ[1] and IRQI0] are asserted, IRQ[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes
precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed
before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception
occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt changes to pending.

12.4.3.6 Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides each interrupt
priority register entry into two fields:

e An upper field that defines the group priority

e Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt
exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the
handler.

If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are
processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ
number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see “Application Interrupt and
Reset Control Register” .

12.4.3.7 Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption

When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is
higher than the priority of the exception being handled. See “Interrupt Priority Grouping” for more information about
preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” more
information.

Return

This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be serviced
e The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See
“Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception
that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception
handler.

Late-arriving

Atmel SAMAE [DATASHEET] 69

11157C-ATARM-25-Jul-13

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception,
the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State
saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the state saving
continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception
handler of the original exception enters the execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread
mode, or the new exception is of a higher priority than the exception being handled, in which case the new exception
preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see “Exception
Mask Registers” . An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor
pushes information onto the current stack. This operation is referred as stacking and the structure of eight data words is
referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on
exception entry. Figure 2-3 on page 2-27 shows the Cortex-M4 stack frame layout when floating-point state is preserved
on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 2-3 on page 2-27 shows this stack frame also.

Atmel SAMAE [DATASHEET] 70

11157C-ATARM-25-Jul-13

Figure 12-7. Exception Stack Frame

I Pre-IRQ top of stack

{aligner}

FPSCR

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

SO

XPSR

PC

LR

R12

Decreasing
memory
address

! {alig.;.r.1er}

] Pre-IRQ top of stack

XPSR

PC

LR

R12

Atmel

R3 R3

R2 v R2
R1 R1

RO <« IRQ top of stack RO 2

IRQ top of stack

Exception frame with
floating-point storage

Exception frame without
floating-point storage

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The alignment of the stack
frame is controlled via the STKALIGN bit of the Configuration Control Register (CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted program. This
value is restored to the PC at exception return so that the interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address
from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same
time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during the exception entry, the processor starts executing the exception handler and
automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during the exception entry, the processor starts executing the exception
handler for this exception and does not change the pending status of the earlier exception. This is the late arrival case.

SAMA4E [DATASHEET] 71

11157C-ATARM-25-Jul-13

Exception Return

An Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load
the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC
e An LDR instruction with the PC as the destination.
e A BXnstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to
detect when the processor has completed an exception handler. The lowest five bits of this value provide information on
the return stack and processor mode. Table 12-10 shows the EXC_RETURN values with a description of the exception

return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC, it indicates to the processor
that the exception is complete, and the processor initiates the appropriate exception return sequence.

Table 12-10. Exception Return Behavior

EXC_RETURNI[31:0] Description
OXEFEEFEEL Return to Handler mode, gxceptlon return uses non-floating-point state
from the MSP and execution uses MSP after return.
OXEFEEFEF9 Return_to Thread mode, exception return uses state from MSP and
execution uses MSP after return.
OXEEFEEEFD Return.to Thread mode, exception return uses state from the PSP and
execution uses PSP after return.
Return to Handler mode, exception return uses floating-point-state from
OXFFFFFFEL MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFES MSP and execution uses MSP after return.
Return to Thread mode, exception return uses floating-point state from
OXFFFFFFED PSP and execution uses PSP after return.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

72

12.4.3.8 Fault Handling

Faults are a subset of the exceptions, see “Exception Model” . The following generate a fault:
e A bus error on:

e An instruction fetch or vector table load

e A data access

e Aninternally-detected error such as an undefined instruction
e An attempt to execute an instruction from a memory region marked as Non-Executable (XN).
e A privilege violation or an attempt to access an unmanaged region causing an MPU fault.

Fault Types

Table 12-11 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the
register bit that indicates that the fault has occurred. See “Configurable Fault Status Register” for more information about

the fault status registers.

Table 12-11. Faults

Fault Handler Bit Name Fault Status Register
Bus error on a vector read VECTTBL
Hard fault “Hard Fault Status Register”
Fault escalated to a hard fault FORCED
MPU or default memory map mismatch: - -
on instruction access IACCVIOL
on data access Memory DACCVIOL®
) . . management “MMFSR: Memory Management Fault
during exception stacking fault MSTKERR Status Subregister”
during exception unstacking MUNSKERR
during lazy floating-point state preservation MLSPERR
Bus error: - -
during exception stacking STKERR
during exception unstacking UNSTKERR
during instruction prefetch Bus fault IBUSERR
)))) “BFSR: Bus Fault Status Subregister”
during lazy floating-point state preservation LSPERR
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
Attempt to access a coprocessor NOCP
Undefined instruction UNDEFINSTR
Attempt to enter an invalid instruction set state ™ INVSTATE
Usage fault “UFSR: Usage Fault Status Subregister”
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO
Notes: 1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attemptto use an instruction set other than the Thumb instruction set, or return to a non load/store-multiple instruction

with ICI continuation.
Fault Escalation and Hard Faults

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

All faults exceptions except for hard fault have configurable exception priority, see “System Handler Priority Registers” .
The software can disable the execution of the handlers for these faults, see “System Handler Control and State Register”

Usually, the exception priority, together with the values of the exception mask registers, determines whether the
processor enters the fault handler, and whether a fault handler can preempt another fault handler, as described in
“Exception Model” .

In some situations, a fault with configurable priority is treated as a hard fault. This is called priority escalation, and the
fault is described as escalated to hard fault. Escalation to hard fault occurs when:

e Afault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because
a fault handler cannot preempt itself; it must have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because the handler
for the new fault cannot preempt the currently executing fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than the currently executing
exception.
e A fault occurs and the handler for that fault is not enabled.
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault.

This means that if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler
failed. The fault handler operates but the stack contents are corrupted.

Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than
Reset, NMI, or another hard fault.

Fault Status Registers and Fault Address Registers

The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address
register indicates the address accessed by the operation that caused the fault, as shown in Table 12-12.

Table 12-12. Fault Status and Fault Address Registers

Handler Status Register | Address Register Description
Name Register Name
Hard fault SCB_HFSR - “Hard Fault Status Register”

“MMFSR: Memory Management Fault
MMFSR SCB_MMFAR Status Subregister”
“MemManage Fault Address Register”

Memory
management fault

“BFSR: Bus Fault Status Subregister”

Bus fault BFSR SCB_BFAR .
“Bus Fault Address Register”
Usage fault UESR) UFSR:. Usa’l’ge Fault Status
Subregister
Lockup

The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the
processor is in lockup state, it does not execute any instructions. The processor remains in lockup state until either:

e ltisreset
e An NMI occurs
e |tis halted by a debugger.

Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the
lockup state.

Atmel SAMAE [DATASHEET] 74

11157C-ATARM-25-Jul-13

12.5 Power Management

The Cortex-M4 processor sleep modes reduce the power consumption:
e Sleep mode stops the processor clock
e Deep sleep mode stops the system clock and switches off the PLL and flash memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used; see “System Control Register” .

This section describes the mechanisms for entering sleep mode, and the conditions for waking up from sleep mode.

12.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into sleep mode.

The system can generate spurious wakeup events, for example a debug operation wakes up the processor. Therefore,
the software must be able to put the processor back into sleep mode after such an event. A program might have an idle
loop to put the processor back to sleep mode.

12.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode. When the processor executes a WFI
instruction it stops executing instructions and enters sleep mode. See “WFI” for more information.

12.5.1.2 Wait for Event
The wait for event instruction (WFE), causes entry to sleep mode conditional on the value of an one-bit event register.
When the processor executes a WFE instruction, it checks this register:
e If the register is 0, the processor stops executing instructions and enters sleep mode
e If the register is 1, the processor clears the register to 0 and continues executing instructions without entering
sleep mode.

See “WFE” for more information.

12.5.1.3 Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1 when the processor completes the execution of an exception handler, it
returns to Thread mode and immediately enters sleep mode. Use this mechanism in applications that only require the
processor to run when an exception occurs.

12.5.2 Wakeup from Sleep Mode

The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode.

12.5.2.1 Wakeup from WFI or Sleep-on-exit
Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and before it
executes an interrupt handler. To achieve this, set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt
arrives that is enabled and has a higher priority than the current exception priority, the processor wakes up but does not
execute the interrupt handler until the processor sets PRIMASK to zero. For more information about PRIMASK and
FAULTMASK, see “Exception Mask Registers” .

12.5.2.2 Wakeup from WFE

The processor wakes up if:
e |t detects an exception with sufficient priority to cause an exception entry
e It detects an external event signal. See “External Event Input”
e In a multiprocessor system, another processor in the system executes an SEV instruction.
In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes up the

processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more information
about the SCR, see “System Control Register” .

Atmel SAMAE [DATASHEET] 75

11157C-ATARM-25-Jul-13

12.5.2.3 External Event Input

1253

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the processor
from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter sleep mode on a
later WFE instruction. See “Wait for Event” for more information.

Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for these
instructions:

void _ WFE(void) // Wait for Event

void _ WFE(void) // Wait for Interrupt

Atmel SAMAE [DATASHEET] 76

11157C-ATARM-25-Jul-13

12.6 Cortex-M4 Instruction Set

12.6.1 Instruction Set Summary

The processor implements a version of the Thumb instruction set. Table 12-13 lists the supported instructions.
e Angle brackets, <>, enclose alternative forms of the operand

Braces, {}, enclose optional operands

The Operands column is not exhaustive

Op2 is a flexible second operand that can be either a register or a constant

Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 12-13. Cortex-M4 Instructions

Mnemonic Operands Description Flags
ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,CV
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,CV
ADD, ADDW {Rd,} Rn, #imm12 Add N,Z,C.V
ADR Rd, label Load PC-relative address -

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C

B label Branch -

BFC Rd, #lsb, #width Bit Field Clear -

BFI Rd, Rn, #Isb, #width Bit Field Insert -

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C
BKPT #imm Breakpoint -

BL label Branch with Link -

BLX Rm Branch indirect with Link -

BX Rm Branch indirect -

CBNz Rn, label Compare and Branch if Non Zero -

CcBz Rn, label Compare and Branch if Zero -
CLREX - Clear Exclusive -

CLZ Rd, Rm Count leading zeros -

CMN Rn, Op2 Compare Negative N,Z,C,V
CMP Rn, Op2 Compare N,Z,C,V
CPSID i Change Processor State, Disable Interrupts -
CPSIE i Change Processor State, Enable Interrupts -

DMB - Data Memory Barrier -

DSB - Data Synchronization Barrier -

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C
ISB - Instruction Synchronization Barrier -

IT - If-Then condition block -

LDM Rn{1}, reglist Load Multiple registers, increment after -

Atmel

SAMA4E [DATASHEET] 77

11157C-ATARM-25-Jul-13

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
LDMDB, LDMEA Rn{1}, reglist Load Multiple registers, decrement before -
LDMFD, LDMIA Rn{!}, reglist Load Multiple registers, increment after -
LDR Rt, [Rn, #offset] Load Register with word -
LDRB, LDRBT Rt, [Rn, #offset] Load Register with byte -
LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes -
LDREX Rt, [Rn, #offset] Load Register Exclusive -
LDREXB Rt, [Rn] Load Register Exclusive with byte -
LDREXH Rt, [Rn] Load Register Exclusive with halfword -
LDRH, LDRHT Rt, [Rn, #offset] Load Register with halfword -
LDRSB, DRSBT Rt, [Rn, #offset] Load Register with signed byte -
LDRSH, LDRSHT Rt, [Rn, #offset] Load Register with signed halfword -
LDRT Rt, [Rn, #offset] Load Register with word -
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,zZ,C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result -
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result -
MOV, MOVS Rd, Op2 Move N,zZ,C
MOVT Rd, #imm16 Move Top -
MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C
MRS Rd, spec_reg Move from special register to general register -
MSR spec_reg, Rm Move from general register to special register N,Z,CV
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z
MVN, MVNS Rd, Op2 Move NOT N,Z,C
NOP - No Operation -
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword -
POP reglist Pop registers from stack -
PUSH reglist Push registers onto stack -
QADD {Rd,} Rn, Rm Saturating double and Add Q
QADD16 {Rd,} Rn, Rm Saturating Add 16 -
QADDS8 {Rd,} Rn, Rm Saturating Add 8 -
QASX {Rd,} Rn, Rm Saturating Add and Subtract with Exchange -
QDADD {Rd,} Rn, Rm Saturating Add Q
QDSuB {Rd,} Rn, Rm Saturating double and Subtract Q
QSAX {Rd,} Rn, Rm Saturating Subtract and Add with Exchange -
QSuUB {Rd,} Rn, Rm Saturating Subtract Q

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

78

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 -
QSuUB8 {Rd,} Rn, Rm Saturating Subtract 8 -
RBIT Rd, Rn Reverse Bits -
REV Rd, Rn Reverse byte order in a word -
REV16 Rd, Rn Reverse byte order in each halfword -
REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend -
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,zZ,C
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,CV
SADD16 {Rd,} Rn, Rm Signed Add 16 GE
SADDS8 {Rd,} Rn, Rm Signed Add 8 and Subtract with Exchange GE
SASX {Rd,} Rn, Rm Signed Add GE
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C.V
SBFX Rd, Rn, #Isb, #width Signed Bit Field Extract -
SDIV {Rd,} Rn, Rm Signed Divide -

SEL {Rd,} Rn, Rm Select bytes -
SEV - Send Event -
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 -
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 -
SHASX {Rd,} Rn, Rm Signed Halving Add and Subtract with Exchange -
SHSAX {Rd,} Rn, Rm Signed Halving Subtract and Add with Exchange -
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 -
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 -
gmtﬁi’g gmtﬁ_ﬁr Rd, Rn, Rm, Ra Signed Multiply Accumulate Long (halfwords) Q
SMLAD, SMLADX Rd, Rn, Rm, Ra Signed Multiply Accumulate Dual Q
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 + 64), 64-bit result -
gmtﬁt_?_g gmtﬁt_ﬂ RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long, halfwords -
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate Long Dual -
SMLAWB, SMLAWT Rd, Rn, Rm, Ra Signed Multiply Accumulate, word by halfword Q
SMLSD Rd, Rn, Rm, Ra Signed Multiply Subtract Dual Q
SMLSLD RdLo, RdHi, Rn, Rm Signed Multiply Subtract Long Dual

SMMLA Rd, Rn, Rm, Ra Signed Most significant word Multiply Accumulate -
SMMLS, SMMLR Rd, Rn, Rm, Ra Signed Most significant word Multiply Subtract -
SMMUL, SMMULR {Rd,} Rn, Rm Signed Most significant word Multiply -
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q

Atmel

SAMA4E [DATASHEET] 79

11157C-ATARM-25-Jul-13

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
§m3t$g:§mgt$; {Rd} Rn, Rm Signed Multiply (halfwords) .
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result -
SMULWB, SMULWT {Rd,} Rn, Rm Signed Multiply word by halfword -
SMUSD, SMUSDX {Rd,} Rn, Rm Signed dual Multiply Subtract -
SSAT Rd, #n, Rm {,shift #s} Signed Saturate Q
SSAT16 Rd, #n, Rm Signed Saturate 16 Q
SSAX {Rd,} Rn, Rm Signed Subtract and Add with Exchange GE
SSUB16 {Rd,} Rn, Rm Signed Subtract 16 -
SSUBS8 {Rd,} Rn, Rm Signed Subtract 8 -
ST™M Rn{!}, reglist Store Multiple registers, increment after -
STMDB, STMEA Rn{!}, reglist Store Multiple registers, decrement before -
STMFD, STMIA Rn{1}, reglist Store Multiple registers, increment after -
STR Rt, [Rn, #offset] Store Register word -
STRB, STRBT Rt, [Rn, #offset] Store Register byte -
STRD Rt, Rt2, [Rn, #offset] Store Register two words -
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive -
STREXB Rd, Rt, [RN] Store Register Exclusive byte -
STREXH Rd, Rt, [Rn] Store Register Exclusive halfword -
STRH, STRHT Rt, [Rn, #offset] Store Register halfword -
STRT Rt, [Rn, #offset] Store Register word -
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C\V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C.V
svC #imm Supervisor Call -
SXTAB {Rd,} Rn, Rm,{,ROR #} | Extend 8 bits to 32 and add -
SXTAB16 {Rd,} Rn, Rm,{,ROR #} | Dual extend 8 bits to 16 and add -
SXTAH {Rd,} Rn, Rm,{,ROR #} | Extend 16 bits to 32 and add -
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 -
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte -
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword -

TBB [Rn, Rm] Table Branch Byte -
TBH [Rn, Rm, LSL #1] Table Branch Halfword -
TEQ Rn, Op2 Test Equivalence N,Z,C
TST Rn, Op2 Test N,Z,C
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE
UADDS8 {Rd,} Rn, Rm Unsigned Add 8 GE
USAX {Rd,} Rn, Rm Unsigned Subtract and Add with Exchange GE

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

80

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 -
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 -
UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange -
UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange -
UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 -
UHSUBS {Rd,} Rn, Rm Unsigned Halving Subtract 8 -
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract -
ubDIV {Rd,} Rn, Rm Unsigned Divide -
UMAAL RdLo, RdHi, Rn, Rm g:_sbi?[rlggul\l{[lultiply Accumulate Accumulate Long (32 x 32 + 32 +32), | _
UMLAL RdLo, RdHi, Rn, Rm g”zs)i(ggze‘i'\g:;t’irgﬁ_‘t’)"iitﬂr‘ep‘sﬁi”m”'ate ;
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result -
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 -
UQADDS {Rd,} Rn, Rm Unsigned Saturating Add 8 -
UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange -
UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange -
UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 -
UQSuUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 -
USADS8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences -
USADAS8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate -
USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q
UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE
USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE
UsuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE
UXTAB {Rd,} Rn, Rm,{,ROR #} | Rotate, extend 8 bits to 32 and Add -
UXTAB16 {Rd,} Rn, Rm,{,ROR #} | Rotate, dual extend 8 bits to 16 and Add -
UXTAH {Rd,} Rn, Rm,{,ROR #} | Rotate, unsigned extend and Add Halfword -
UXTB {Rd,} Rm {,ROR #n} Zero extend a byte -
UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 -
UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword -
VABS.F32 Sd, Sm Floating-point Absolute -
VADD.F32 {Sd,} Sn, Sm Floating-point Add -
VCMP E32 Sd, <Sm | #0.0> gr?(lj‘nzp);r(;e two floating-point registers, or one floating-point register FPSCR
vowperzz | sa<smisoos | Some o tostngpantvgiters o one fosing ponteoster | e

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

81

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
VCVT.S32.F32 Sd, Sm Convert between floating-point and integer -
VCVT.S16.F32 Sd, Sd, #fhits Convert between floating-point and fixed point -
VCVTR.S32.F32 Sd, Sm Convert between floating-point and integer with rounding -
VCVT<B|H>.F32.F16 Sd, Sm Converts half-precision value to single-precision -
VCVTT<B|T>.F32.F16 | Sd, Sm Converts single-precision register to half-precision -
VDIV.F32 {Sd,} Sn, Sm Floating-point Divide -
VFMA.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Accumulate -
VFNMA.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Accumulate -
VFMS.F32 {Sd,} Sn, Sm Floating-point Fused Multiply Subtract -
VFNMS.F32 {Sd,} Sn, Sm Floating-point Fused Negate Multiply Subtract -
VLDM.F<32|64> Rn{1}, list Load Multiple extension registers -
VLDR.F<32|64> <Dd|Sd>, [Rn] Load an extension register from memory -
VLMA.F32 {S8d,} Sn, Sm Floating-point Multiply Accumulate -
VLMS.F32 {Sd,} Sn, Sm Floating-point Multiply Subtract -
VMOV.F32 Sd, #imm Floating-point Move immediate -
VMOV Sd, Sm Floating-point Move register -
VMOV Sn, Rt Copy ARM core register to single precision -
VMOV Sm, Sm1, Rt, Rt2 Copy 2 ARM core registers to 2 single precision -
VMOV Dd[x], Rt Copy ARM core register to scalar -
VMOV Rt, Dn[x] Copy scalar to ARM core register -
VMRS Rt, FPSCR Move FPSCR to ARM core register or APSR N,Z,C,V
VMSR FPSCR, Rt Move to FPSCR from ARM Core register FPSCR
VMUL.F32 {Sd,} Sn, Sm Floating-point Multiply -
VNEG.F32 Sd, Sm Floating-point Negate -
VNMLA.F32 Sd, Sn, Sm Floating-point Multiply and Add -
VNMLS.F32 Sd, Sn, Sm Floating-point Multiply and Subtract -
VNMUL {Sd,} Sn, Sm Floating-point Multiply -
VPOP list Pop extension registers -
VPUSH list Push extension registers -
VSQRT.F32 Sd, Sm Calculates floating-point Square Root -
VSTM Rn{1}, list Floating-point register Store Multiple -
VSTR.F<32|64> Sd, [Rn] Stores an extension register to memory -
VSUB.F<32|64> {Sd,} Sn, Sm Floating-point Subtract -
WFE - Wait For Event -
WFI - Wait For Interrupt -

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

82

12.6.2 CMSIS Functions

ISO/IEC cannot directly access some Cortex-M4 instructions. This section describes intrinsic functions that can generate
these instructions, provided by the CMIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C code cannot directly access:

Table 12-14. CMSIS Functions to Generate some Cortex-M4 Instructions

Instruction CMSIS Function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIE F void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void ___DSB(void)

DMB void __DMB(void)

REV uint32_t _ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __SEV/(void)

WFE void __ WFE(void)

WFI void __WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using MRS and MSR instructions:

Table 12-15. CMSIS Intrinsic Functions to Access the Special Registers

Special Register Access | CMSIS Function
Read uint32_t __get PRIMASK (void)
PRIMASK
Write void __set PRIMASK (uint32_t value)
Read uint32_t __get FAULTMASK (void)
FAULTMASK
Write void __set FAULTMASK (uint32_t value)
Read uint32_t __get BASEPRI (void)
BASEPRI
Write void __set BASEPRI (uint32_t value)
Read uint32_t __get CONTROL (void)
CONTROL
Write void __set CONTROL (uint32_t value)
Read uint32_t __get MSP (void)
MSP
Write void __set MSP (uint32_t TopOfMainStack)
Read uint32_t __get PSP (void)
PSP : : :
Write void __set PSP (uint32_t TopOfProcStack)

Atmel

SAMAE [DATASHEET] 83

11157C-ATARM-25-Jul-13

12.6.3 Instruction Descriptions

12.6.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination register. When there is a destination register in the instruction, it
is usually specified before the operands.

Operands in some instructions are flexible, can either be a register or a constant. See “Flexible Second Operand” .

12.6.3.2 Restrictions when Using PC or SP
Many instructions have restrictions on whether the Program Counter (PC) or Stack Pointer (SP) for the operands or
destination register can be used. See instruction descriptions for more information.

Note: Bit[O] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct exe-
cution, because this bit indicates the required instruction set, and the Cortex-M4 processor only supports Thumb
instructions.

12.6.3.3 Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand?2 in the
descriptions of the syntax of each instruction.
Operand2 can be a:
e “Constant”
e “Register with Optional Shift”
Constant

Specify an Operand?2 constant in the form:
#constant
where constant can be:
e Any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit word
e Any constant of the form 0x00XYO0O0XY
e Any constant of the form 0xXYO00XY00
e Any constant of the form OxXYXYXYXY.

Note: In the constants shown above, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values. These are described in the
individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or
TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can be produced by
shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any other constant.

Instruction Substitution
The assembler might be able to produce an equivalent instruction in cases where the user specifies a constant that is not

permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as the equivalent
instruction CMN Rd, #0x2.

Register with Optional Shift

Specify an Operand2 register in the form:
Rm {, shift}

where:
Rm is the register holding the data for the second operand.
shift is an optional shift to be applied to Rm. It can be one of:
ASR #n arithmetic shift right n bits, 1 < n < 32.
SAMA4E [DATASHEET 84
Atmel []

11157C-ATARM-25-Jul-13

LSL #n logical shift left n bits, 1 <n < 31.
LSR #n logical shift right n bits, 1 < n < 32.
ROR #n rotate right n bits, 1 <n < 31.

RRX rotate right one bit, with extend.

- if omitted, no shift occurs, equivalent to LSL #0.
If the user omits the shift, or specifies LSL #0, the instruction uses the value in Rm.

If the user specifies a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the instruction.
However, the contents in the register Rm remains unchanged. Specifying a register with shift also updates the carry flag
when used with certain instructions. For information on the shift operations and how they affect the carry flag, see
“Flexible Second Operand”

12.6.3.4 Shift Operations
Register shift operations move the bits in a register left or right by a specified number of bits, the shift length. Register
shift can be performed:
e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination register
e During the calculation of Operand2 by the instructions that specify the second operand as a register with shift. See
“Flexible Second Operand” . The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction. If the shift length is 0, no shift occurs. Register
shift operations update the carry flag except when the specified shift length is 0. The following sub-sections describe the
various shift operations and how they affect the carry flag. In these descriptions, Rm is the register containing the value
to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register, Rm, to the right by n places, into the right-hand
32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n bits of the result. See Figure 12-
8.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the result being rounded towards
negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 12-8. ASR #3
1

camy

Flag

3 S|4|13|z|1|D |;|
| 1

]

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand
32-n bits of the result. And it sets the left-hand n bits of the result to 0. See Figure 12-9.

LSR

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value is regarded as an unsigned
integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the register Rm.

Atmel SAMAE [DATASHEET] 85

11157C-ATARM-25-Jul-13

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-9. LSR #3
| |
0oo
T ¥ ¥

carry
Flag
3 S14l3|2|1|0 |;|
1
]

O —

BEES

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the left-hand 32-n
bits of the result; and it sets the right-hand n bits of the result to 0. See Figure 12-10.

The LSL #n operation can be used to multiply the value in the register Rm by 2", if the value is regarded as an unsigned
integer or a two's complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions MOVS, MVNS,
ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[32-n], of the
register Rm. These instructions do not affect the carry flag when used with LSL #0.

e Ifnis 32 or more, then all the bits in the result are cleared to 0.
e Ifnis 33 or more and the carry flag is updated, it is updated to 0.

Figure 12-10. LSL #3

[
I ! ooo
] L B A
D31 413|2|1|0
ey FTEL] 1]
Flag

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n
bits of the result; and it moves the right-hand n bits of the register into the left-hand n bits of the result. See Figure 12-11.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the register Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is updated to
bit[31] of Rm.
e ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 12-11. ROR #3

Flag
Iy |
Eh S|1&13|2|1|0 |1
r 1
L H |
SAMAE [DATASHEET] 86
AtmeL 11157C-ATARM-25-Jul-13

RRX

12.6.3.5

12.6.3.6

12.6.3.7

Atm

Rotate right with extend moves the bits of the register Rm to the right by one bit; and it copies the carry flag into bit[31] of
the result. See Figure 12-12.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.

Figure 12-12. RRX
Camy
Flag

3|30 1|0

) L]

Address Alignment
An aligned access is an operation where a word-aligned address is used for a word, dual word, or multiple word access,
or where a halfword-aligned address is used for a halfword access. Byte accesses are always aligned.
The Cortex-M4 processor supports unaligned access only for the following instructions:
e |DR,LDRT
e LDRH, LDRHT
e LDRSH, LDRSHT
e STR, STRT
e STRH, STRHT

All other load and store instructions generate a usage fault exception if they perform an unaligned access, and therefore
their accesses must be address-aligned. For more information about usage faults, see “Fault Handling” .

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might not support
unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses are aligned. To avoid
accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the Configuration and Control Register to
trap all unaligned accesses, see “Configuration and Control Register” .

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data. It is represented
in the instruction as the PC value plus or minus a numeric offset. The assembler calculates the required offset from the
label and the address of the current instruction. If the offset is too big, the assembler produces an error.

For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction plus 4 bytes.
For all other instructions that use labels, the value of the PC is the address of the current instruction plus 4 bytes,
with bit[1] of the result cleared to 0 to make it word-aligned.

e Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or minus a number,
or an expression of the form [PC, #number].

Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program Status Register
(APSR) according to the result of the operation, see “Application Program Status Register”. Some instructions update all
flags, and some only update a subset. If a flag is not updated, the original value is preserved. See the instruction
descriptions for the flags they affect.
An instruction can be executed conditionally, based on the condition flags set in another instruction, either:

e Immediately after the instruction that updated the flags

e After any number of intervening instructions that have not updated the flags.

SAMA4E [DATASHEET] 87

eL 11157C-ATARM-25-Jul-13

Conditional execution is available by using conditional branches or by adding condition code suffixes to instructions. See
Table 12-16 for a list of the suffixes to add to instructions to make them conditional instructions. The condition code suffix
enables the processor to test a condition based on the flags. If the condition test of a conditional instruction fails, the
instruction:

e Does not execute
e Does not write any value to its destination register
e Does not affect any of the flags
e Does not generate any exception.
Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See “IT” for more

information and restrictions when using the IT instruction. Depending on the vendor, the assembler might automatically
insert an IT instruction if there are conditional instructions outside the IT block.

The CBZ and CBNZ instructions are used to compare the value of a register against zero and branch on the result.

This section describes:
e “Condition Flags”
e “Condition Code Suffixes” .

Condition Flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to O otherwise.

\% Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, see “Program Status Register” .
A carry occurs:

e If the result of an addition is greater than or equal to 2%?

e If the result of a subtraction is positive or zero

e As the result of an inline barrel shifter operation in a move or logical instruction.
An overflow occurs when the sign of the result, in bit[31], does not match the sign of the result, had the operation been
performed at infinite precision, for example:

e [f adding two negative values results in a positive value

e If adding two positive values results in a negative value

e If subtracting a positive value from a negative value generates a positive value

e If subtracting a negative value from a positive value generates a negative value.
The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is discarded.
See the instruction descriptions for more information.

Note: Most instructions update the status flags only if the S suffix is specified. See the instruction descriptions for more
information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as {cond}.
Conditional execution requires a preceding IT instruction. An instruction with a condition code is only executed if the
condition code flags in the APSR meet the specified condition. Table 12-16 shows the condition codes to use.

A conditional execution can be used with the IT instruction to reduce the number of branch instructions in code.

Atmel SAMAE [DATASHEET] 88

11157C-ATARM-25-Jul-13

Table 12-16 also shows the relationship between condition code suffixes and the N, Z, C, and V flags.

Table 12-16. Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CH:g or c=1 Higher or same, unsigned >

E((): or C=0 Lower, unsigned <

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

VC V=0 No overflow

HI C=l1landZ=0 Higher, unsigned >

LS C=0o0r z2=1 Lower or same, unsigned <

GE N=V Greater than or equal, signed >

LT N!=V Less than, signed <

GT Z=0and N=V Greater than, signed >

LE Z=1and N !=V | Lessthan or equal, signed <

AL Can have any AIwa_yg This is the default when no suffix is
value specified.

Absolute Value

The example below shows the use of a conditional instruction to find the absolute value of a number. RO = ABS(R1).

MOVS RO, R1 ; RO = R1, setting flags
1T M1 ; IT instruction for the negative condition
RSBMI RO, R1, #0 ; If negative, RO = -R1

Compare and Update Value

The example below shows the use of conditional instructions to update the value of R4 if the signed values RO is greater
than R1 and R2 is greater than R3.

CMP RO, R1 ; Compare RO and R1l, setting flags

ITT GT ; IT instruction for the two GT conditions

CMPGT R2, R3 ; I “"greater than®, compare R2 and R3, setting flags
MOVGT R4, R5 ; 1T still “greater than®, do R4 = R5

12.6.3.8 Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending on the operands
and destination register specified. For some of these instructions, the user can force a specific instruction size by using
an instruction width suffix. The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

If the user specifies an instruction width suffix and the assembler cannot generate an instruction encoding of the
requested width, it generates an error.

Note: In some cases, it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not automat-

ically generate the right size encoding.

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

89

Atmel

12.6.4

Mnemonic Description
ADR Load PC-relative address
CLREX Clear Exclusive
LDM{mode} Load Multiple registers
LDR{type} Load Register using immediate offset
LDR{type} Load Register using register offset
LDR{type}T Load Register with unprivileged access
LDR Load Register using PC-relative address
LDRD Load Register Dual
LDREX{type} Load Register Exclusive
POP Pop registers from stack
PUSH Push registers onto stack
STM{mode} Store Multiple registers
STR{type} Store Register using immediate offset
STR{type} Store Register using register offset
STR{type}T Store Register with unprivileged access
STREX{type} Store Register Exclusive
12.6.4.1 ADR
Load PC-relative address.
Syntax
ADR{cond} Rd, label
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
label is a PC-relative expression. See “PC-relative Expressions” .
Operation

Atmel

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code, if any. The
example below shows instructions with the instruction width suffix.

BCS.W label ; Ccreates a 32-bit instruction even for a short
; branch
ADDS.W RO, RO, R1 ; creates a 32-bit instruction even though the same

operation can be done by a 16-bit instruction

Memory Access Instructions

The table below shows the memory access instructions:

Table 12-17. Memory Access Instructions

ADR determines the address by adding an immediate value to the PC, and writes the result to the destination register.
ADR produces position-independent code, because the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, ensure that bit[0] of the address generated is set
to 1 for correct execution.

Values of label must be within the range of —4095 to +4095 from the address in the PC.

SAMAE [DATASHEET] 90

11157C-ATARM-25-Jul-13

Note: The user might have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See “Instruction Width Selection” .

Restrictions

Rd must not be SP and must not be PC.
Condition Flags

This instruction does not change the flags.

Examples
ADR R1, TextMessage Write address value of a location labelled as

TextMessage to R1
12.6.4.2 LDR and STR, Immediate Offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax
op{type}{cond} Rt, [Rn {, #offset}]
op{type}{cond} Rt, [Rn, #offset]!
op{type}{cond} Rt, [Rn], #offset
opD{cond} Rt, Rt2, [Rn {, #offset}]
opD{cond} Rt, Rt2, [Rn, #offset]!
opD{cond} Rt, Rt2, [Rn], #offset

immediate offset
pre-indexed

post-indexed

immediate offset, two words
pre-indexed, two words
post-indexed, two words

where:
op is one of:
LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an offset from Rn. If offset is omitted, the address is the contents of Rn.
Rt2 is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access. The register Rn is unaltered. The assembly language syntax for this mode is:
[Rn, #offset]

Pre-indexed Addressing

Atmel SAMAE [DATASHEET] 91

11157C-ATARM-25-Jul-13

The offset value is added to or subtracted from the address obtained from the register Rn. The result is used as the
address for the memory access and written back into the register Rn. The assembly language syntax for this mode is:
[Rn, #offset]!

Post-indexed Addressing

The address obtained from the register Rn is used as the address for the memory access. The offset value is added to or
subtracted from the address, and written back into the register Rn. The assembly language syntax for this mode is:
[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be signed or
unsigned. See “Address Alignment” .

The table below shows the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 12-18. Offset Ranges
Instruction Type Immediate Offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

multiple of 4 in the multiple of 4 in the
Two words range -1020 to range -1020 to
1020 1020

multiple of 4 in the
range -1020 to 1020

Restrictions

For load instructions:

e Rtcan be SP or PC for word loads only

e Rt must be different from Rt2 for two-word loads

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.
When Rt is PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution

e A branch occurs to the address created by changing bit[0] of the loaded value to 0

e If the instruction is conditional, it must be the last instruction in the IT block.
For store instructions:

e Rtcan be SP for word stores only

e Rt mustnot be PC

e Rn must not be PC

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition Flags

These instructions do not change the flags.

Examples
LDR R8, [R10] : Loads R8 fromthe address in RI10.
LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 froma word
; 960 bytes above the address in R5, and
; increnments R5 by 960.
STR R2, [R9,#const-struc] ; const-struc is an expression eval uating
; to a constant in the range 0-4095.
STRH R3, [R4], #4 ;. Store R3 as halfword data into address in
; R4, then increnent R4 by 4
LDRD R8, R9, [R3, #0x20] ; Load R8 froma word 32 bytes above the

; address in R3, and load RO froma word 36
; bytes above the address in R3

STRD RO, R1, [R8], #-16 : Store RO to address in R8, and store Rl to
; a word 4 bytes above the address in RS,
; and then decrenent R8 by 16.

Atmel SAMAE [DATASHEET] 92

11157C-ATARM-25-Jul-13

12.6.4.3 LDR and STR, Register Offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:

B unsigned byte, zero extend to 32 bits on loads.

SB signed byte, sign extend to 32 bits (LDR only).

H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.

Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by the register
Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment” .

Restrictions

In these instructions:
e Rn must not be PC
e Rm must not be SP and must not be PC
e Rtcan be SP only for word loads and word stores
e Rt can be PC only for word loads.

When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
e If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal to
; sumof R5 and R1

LDRSB RO, [R5, R1, LSL #1] ; Read byte value froman address equal to
; sumof R5 and two times R1, sign extended it
; to a wrd value and put it in RO

Atmel SAMAE [DATASHEET] 93

11157C-ATARM-25-Jul-13

STR RO, [R1l, R2, LSL #2] ; Stores RO to an address equal to sumof Rl
; and four tines R2

12.6.4.4 LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; Iimmediate offset
where:
op is one of:

LDR Load Register.
STR Store Register.
type is one of:
B unsigned byte, zero extend to 32 bits on loads.
SB signed byte, sign extend to 32 bits (LDR only).
H unsigned halfword, zero extend to 32 bits on loads.
SH signed halfword, sign extend to 32 bits (LDR only).

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255.

If offset is omitted, the address is the value in Rn.
Operation

These load and store instructions perform the same function as the memory access instructions with immediate offset,
see “LDR and STR, Immediate Offset” . The difference is that these instructions have only unprivileged access even
when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal memory access
instructions with immediate offset.

Restrictions

In these instructions:
e Rn mustnot be PC
e Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivil eged access
LDRHT R2, [R2, #8] ; Load hal fword value froman address equal to

; sumof R2 and 8 into R2, with unprivil eged access

Atmel SAMAE [DATASHEET] 94

11157C-ATARM-25-Jul-13

12.6.4.5 LDR, PC-relative

Load register from memory.

Syntax
LDR{type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label ; Load two words

where:
type is one of:
B unsigned byte, zero extend to 32 bits.
SB signed byte, sign extend to 32 bits.
H unsigned halfword, zero extend to 32 bits.
SH signed halfword, sign extend to 32 bits.

- omit, for word.

cond is an optional condition code, see “Conditional Execution” .
Rt is the register to load or store.

Rt2 is the second register to load or store.

label is a PC-relative expression. See “PC-relative Expressions” .
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified by a label or by
an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords can either be
signed or unsigned. See “Address Alignment” .

label must be within a limited range of the current instruction. The table below shows the possible offsets between label
and the PC.

Table 12-19. Offset Ranges

Instruction Type Offset Range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

The user might have to use the .W suffix to get the maximum offset range. See “Instruction Width Selection” .
Restrictions
In these instructions:
e Rtcan be SP or PC only for word loads
e Rt2 must not be SP and must not be PC
e Rt must be different from Rt2.
When Rt is PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-aligned address
e If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples
LDR RO, LookUpTabl e ; Load RO with a word of data from an address
; labell ed as LookUpTabl e
LDRSB R7, |ocal data ; Load a byte value from an address | abelled
SAM4E [DATASHEET)] 95
/ItmeL 11157C-ATARM-25-Jul-13

; as localdata, sign extend it to a word
; value, and put it in R7

12.6.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist
where:
op is one of:

LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode is any one of the following:

1A Increment address After each access. This is the default.
DB Decrement address Before each access.
cond is an optional condition code, see “Conditional Execution” .
Rn is the register on which the memory addresses are based.

! is an optional writeback suffix.
If I'is present, the final address, that is loaded from or stored to, is written back into Rn.

reglist is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see “Examples” ..

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending stacks.
LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending stacks.
STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses happens in order
of increasing register numbers, with the lowest numbered register using the lowest memory address and the highest
number register using the highest memory address. If the writeback suffix is specified, the value of Rn + 4 * (n-1) is
written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte intervals ranging
from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses happen in order of decreasing
register numbers, with the highest numbered register using the highest memory address and the lowest number register
using the lowest memory address. If the writeback suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See “PUSH and POP” for details.
Restrictions
In these instructions:
e Rn mustnot be PC
reglist must not contain SP
In any STM instruction, reglist must not contain PC
In any LDM instruction, reglist must not contain PC if it contains LR
reglist must not contain Rn if the writeback suffix is specified.

Atmel SAMAE [DATASHEET] 96

11157C-ATARM-25-Jul-13

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

LDM R8, { RO, R2, RO} ; LDMA is a synonymfor LDM
STNVDB R1l!, { R3- R6, R11, R12}

Incorrect Examples

STM R5!,{R5, R4, RO} ; Value stored for R5 is unpredictable
LDM R2, {} ; There nust be at | east one register in the list

12.6.4.7 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax
PUSH{cond} reglist
POP{cond} reglist
where:
cond is an optional condition code, see “Conditional Execution” .
reglist is a non-empty list of registers, enclosed in braces. It can contain register

ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access based on SP,
and with the final address for the access written back to the SP. PUSH and POP are the preferred mnemonics in these
cases.

Operation

PUSH stores registers on the stack in order of decreasing the register numbers, with the highest numbered register using
the highest memory address and the lowest numbered register using the lowest memory address.

POP loads registers from the stack in order of increasing register numbers, with the lowest numbered register using the
lowest memory address and the highest numbered register using the highest memory address.

See “LDM and STM” for more information.
Restrictions

In these instructions:

e reglist must not contain SP

e For the PUSH instruction, reglist must not contain PC

e For the POP instruction, reglist must not contain PC if it contains LR.
When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this halfword-aligned
address

e If the instruction is conditional, it must be the last instruction in the IT block.
Condition Flags
These instructions do not change the flags.

Examples

Atmel SAMAE [DATASHEET] 97

11157C-ATARM-25-Jul-13

PUSH {RO,R4-R7}
PUSH {R2,LR}
POP {RO,R10,PC}

12.6.4.8 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register for the returned status.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
offset is an optional offset applied to the value in Rn.

If offset is omitted, the address is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory address. The
address used in any Store-Exclusive instruction must be the same as the address in the most recently executed Load-
exclusive instruction. The value stored by the Store-Exclusive instruction must also have the same data size as the value
loaded by the preceding Load-exclusive instruction. This means software must always use a Load-exclusive instruction
and a matching Store-Exclusive instruction to perform a synchronization operation, see “Synchronization Primitives” .

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not perform the store, it
writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the destination register, it is guaranteed
that no other process in the system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive and Store-
Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the preceding Load-
Exclusive instruction is unpredictable.

Restrictions
In these instructions:
e Donotuse PC
e Do not use SP for Rd and Rt
e For STREX, Rd must be different from both Rt and Rn
e The value of offset must be a multiple of four in the range 0-1020.
Condition Flags
These instructions do not change the flags.
Examples

MOV R1, #O0x1 ; Initialize the “lock taken” value try
LDREX RO, [LockAddr] ; Load the lock value

Atmel SAMAE [DATASHEET] 98

11157C-ATARM-25-Jul-13

12.6.4.9 CLREX

CMP RO, #0 ; Is the lock free?

ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1, [LockAddr] ; Try and claim the lock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No — try again

; Yes — we have the

Clear Exclusive.

Syntax
CLREX{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and fail to
perform the store. It is useful in exception handler code to force the failure of the store exclusive if the exception occurs
between a load exclusive instruction and the matching store exclusive instruction in a synchronization operation.

See “Synchronization Primitives” for more information.

Condition Flags

These instructions do not change the flags.

Examples

CLREX

12.6.5 General Data Processing Instructions

The table below shows the data processing instructions:

Table 12-20. Data Processing Instructions

Mnemonic | Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right
BIC Bit Clear

CLz Count leading zeros
CMN Compare Negative
CMP Compare

EOR Exclusive OR

LSL Logical Shift Left
LSR Logical Shift Right
MOV Move

MOVT Move Top

MOVW Move 16-bit constant

Atmel

SAMAE [DATASHEET] 99

11157C-ATARM-25-Jul-13

Table 12-20. Data Processing Instructions (Continued)

Mnemonic | Description

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend
ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADD8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 | Signed Halving Add 16

SHADDS8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange
SHSAX Signed Halving Subtract and Add with Exchange
SHSUB16 | Signed Halving Subtract 16

SHSUBS8 Signed Halving Subtract 8

SSUB16 Signed Subtract 16

SSUBS8 Signed Subtract 8

SuUB Subtract

SUBW Subtract

TEQ Test Equivalence

TST Test

UADD16 Unsigned Add 16

UADDS8 Unsigned Add 8

UASX Unsigned Add and Subtract with Exchange
USAX Unsigned Subtract and Add with Exchange
UHADD16 | Unsigned Halving Add 16

UHADDS8 Unsigned Halving Add 8

UHASX Unsigned Halving Add and Subtract with Exchange
UHSAX Unsigned Halving Subtract and Add with Exchange
UHSUB16 | Unsigned Halving Subtract 16

UHSUBS Unsigned Halving Subtract 8

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

100

Table 12-20. Data Processing Instructions (Continued)

Mnemonic | Description
USADS8 Unsigned Sum of Absolute Differences
USADAS8 Unsigned Sum of Absolute Differences and Accumulate
USUB16 Unsigned Subtract 16
UsuB8 Unsigned Subtract 8
AtmeL SAMA4E [DATASHEET)] 101

11157C-ATARM-25-Jul-13

12.6.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
where:
op is one of:

ADD Add.

ADC Add with Carry.
SUB Subtract.

SBC Subtract with Carry.
RSB Reverse Subtract.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options.

imm12 is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the result is reduced
by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the wide range of
options for Operand?2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples on.
See also “ADR” .

Note: ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions

In these instructions:

e Operand2 must not be SP and must not be PC

e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:

e Rn must also be SP

e Any shift in Operand2 must be limited to a maximum of 3 bits using LSL
Rn can be SP only in ADD and SUB
Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

e The user must not specify the S suffix

e Rm must not be PC and must not be SP

e If the instruction is conditional, it must be the last instruction in the IT block

Atmel SAMAE [DATASHEET] 102

11157C-ATARM-25-Jul-13

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and only with
the additional restrictions:

e The user must not specify the S suffix
e The second operand must be a constant in the range 0 to 4095.

e Note: When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to Ob00 before
performing the calculation, making the base address for the calculation word-aligned.

e Note: To generate the address of an instruction, the constant based on the value of the PC must be
adjusted. ARM recommends to use the ADR instruction instead of ADD or SUB with Rn equal to the PC,
because the assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to O.

Condition Flags
If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3 ; Sets the flags on the result
SUBS R8, R6, #240 ; Subtracts contents of R4 from 1280
RSB R4, R4, #1280 ; Only executed if C flag set and Z
ADCHI R11, RO, R3 ; Flag clear.

Multiword Arithmetic Examples

The example below shows two instructions that add a 64-bit integer contained in R2 and R3 to another 64-bit integer
contained in RO and R1, and place the result in R4 and R5.

64-bit Addition Example
ADDS R4, RO, R2 ; add the least significant words
ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The example below shows instructions that subtract a 96-bit
integer contained in R9, R1, and R11 from another contained in R6, R2, and R8. The example stores the result in R6, R9,
and R2.

96-bit Subtraction Example
SUBS R6, R6, R9
SBCS R9, R2, R1
SBC R2, R8, R11

subtract the least significant words
subtract the middle words with carry
subtract the most significant words with carry

Atmel SAM4E [DATASHEET] 103

11157C-ATARM-25-Jul-13

12.6.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:
op is one of:
AND logical AND.
ORR logical OR, or bit set.
EOR logical Exclusive OR.
BIC logical AND NOT, or bit clear.
ORN logical OR NOT.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the values in Rn and
Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the corresponding bits in the
value of Operand2.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If S is specified, these instructions:
e Update the N and Z flags according to the result
e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
AND R9, R2, #OxFFOO
ORREQ R2, RO, R5
ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #Oxab
ORN R7, R11, R14, ROR #4

ORNS R7, R11, R14, ASR #32

Atmel SAMAE [DATASHEET] 104

11157C-ATARM-25-Jul-13

12.6.5.3 ASR, LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

Syntax
op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm

where:

op is one of:
ASR Arithmetic Shift Right.
LSL Logical Shift Left.
LSR Logical Shift Right.
ROR Rotate Right.

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

Rd is the destination register.
Rm is the register holding the value to be shifted.
Rs is the register holding the shift length to apply to the value in Rm. Only the least

significant byte is used and can be in the range 0 to 255.
n is the shift length. The range of shift length depends on the instruction:
ASR shift length from 1 to 32
LSL shift length from 0 to 31
LSR shift length from 1 to 32
ROR shift length from 0 to 31

MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places specified by
constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For details on what
result is generated by the different instructions, see “Shift Operations” .

Restrictions
Do not use SP and do not use PC.
Condition Flags
If S is specified:
e These instructions update the N and Z flags according to the result
e The Cflag is updated to the last bit shifted out, except when the shift length is 0, see “Shift Operations” .
Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
SLS R1, R2, #3 ; Logical shift left by 3 bits with flag update
LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 Rotate right by the value in the bottom byte of R6
RRX R4, R5 Rotate right with extend.

Atmel SAM4E [DATASHEET] 105

11157C-ATARM-25-Jul-13

12.6.5.4CLZ

Count Leading Zeros.

Syntax
CLZ{cond} Rd, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd. The result value
is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.
Condition Flags

This instruction does not change the flags.

Examples
CLzZ R4,R9
CLZNE R2,R3

Atmel SAMAE [DATASHEET] 106

11157C-ATARM-25-Jul-13

12.6.5.5 CMP and CMN

Compare and Compare Negative.

Syntax
CMP{cond} Rn, Operand2
CMN{cond} Rn, Operand2
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the register holding the first operand.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the result, but do
not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS instruction,
except that the result is discarded.

The CMN instruction adds the value of Operand?2 to the value in Rn. This is the same as an ADDS instruction, except that
the result is discarded.

Restrictions

In these instructions:
e Donotuse PC
e Operand2 must not be SP.
Condition Flags
These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, #6400
CMPGT SP, R7, LSL #2

12.6.5.6 MOV and MVN
Move and Move NOT.

Syntax
MOV{S}{cond} Rd, Operand2
Mov{cond} Rd, #imml6
MVN{S}{cond} Rd, Operand2

where:
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options
imm16 is any value in the range 0-65535.
Operation

The MOV instruction copies the value of Operand?2 into Rd.

Atmel SAMAE [DATASHEET] 107

11157C-ATARM-25-Jul-13

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

e ASR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{SHcond} Rd, Rm, ASR #n
LSL{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL #nifn !=0
LSR{SHcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR #n
ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, ROR #n
RRX{SHcond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.
Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

e MOV{SKcond} Rd, Rm, ASR Rs is a synonym for ASR{SHcond} Rd, Rm, Rs

e MOV{SHcond} Rd, Rm, LSL Rs is a synonym for LSL{SHcond} Rd, Rm, Rs

e MOV{SKcond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs

e MOV{SKcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs
See “ASR, LSL, LSR, ROR, and RRX" .

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value, and places the
result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.
Restrictions
SP and PC only can be used in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift
e The S suffix must not be specified.
When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or BLX instruction
to branch for software portability to the ARM instruction set.

Condition Flags
If S is specified, these instructions:
e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”
e Do not affect the V flag.

Examples
MOVS R11, #0x000B ; Write value of 0x000B to
R11, flags get updated
MOV R1, #OxFAO5 ; Write value of OxFAO5 to
R1, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10,

flags get updated
MOV R3, #23
MOV ~ R8, SP
MVNS R2, #OxF

Write value of 23 to R3

Write value of stack pointer to R8

Write value of OxXFFFFFFFO (bitwise inverse of OxF)
to the R2 and update flags.

Atmel SAM4E [DATASHEET] 108

11157C-ATARM-25-Jul-13

12.6.5.7 MOVT
Move Top.
Syntax
MOVT{cond} Rd, #imml16
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
imm16 is a 16-bit immediate constant.
Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register. The write does
not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.
Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MOVT R3, #O0xF123 ; Write OxF123 to upper halfword of R3, lower halfword
; and APSR are unchanged.

12.6.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:
op is any of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32 bits.
RBIT Reverse the bit order in a 32-bit word.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
e 32-bit big-endian data into little-endian data
e 32-hit little-endian data into big-endian data.
REV16 converts either:
e 16-bit big-endian data into little-endian data
e 16-hit little-endian data into big-endian data.
REVSH converts either:
e 16-bit signed big-endian data into 32-bit signed little-endian data

Atmel SAM4E [DATASHEET] 109

11157C-ATARM-25-Jul-13

e 16-bit signed little-endian data into 32-bit signed big-endian data.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
REV ~ R3, R7; Reverse byte order of value in R7 and write it to R3
REV16 RO, RO; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5; Reverse Signed Halfword
REVHS R3, R7; Reverse with Higher or Same condition
RBIT R7, R8; Reverse bit order of value in R8 and write the result to R7.

12.6.5.9 SADD16 and SADDS8
Signed Add 16 and Signed Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:
SADD16 Performs two 16-bit signed integer additions.
SADDS8 Performs four 8-bit signed integer additions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel:
The SADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the result in the corresponding halfwords of the destination register.
The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
Writes the result in the corresponding bytes of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples

SADD16 R1, RO Adds the halfwords in RO to the corresponding
halfwords of R1 and writes to corresponding halfword
of R1.
Adds bytes of RO to the corresponding byte in R5 and

writes to the corresponding byte in R4.

SADD8 R4, RO, R5

Atmel SAM4E [DATASHEET] 110

11157C-ATARM-25-Jul-13

12.6.5.10 SHADD16 and SHADDS8
Signed Halving Add 16 and Signed Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SHADD16 Signed Halving Add 16.
SHADDS Signed Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDBS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SHADD16 R1, RO Adds halfwords In RO to corresponding halfword of R1
and writes halved result to corresponding halfword in
R1
Adds bytes of RO to corresponding byte in R5 and

writes halved result to corresponding byte in R4.

SHADD8 R4, RO, R5

CI I N N I]

Atmel SAM4E [DATASHEET] 111

11157C-ATARM-25-Jul-13

12.6.5.11 SHASX and SHSAX
Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is any of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SHASX instruction:
1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
2. Writes the halfword result of the addition to the top halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
3. Subtracts the top halfword of the second operand from the bottom highword of the first operand.
4. Writes the halfword result of the division in the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
The SHSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Writes the halfword result of the addition to the bottom halfword of the destination register, shifted by one bit to the
right causing a divide by two, or halving.
3. Adds the bottom halfword of the first operand with the top halfword of the second operand.
4. Writes the halfword result of the division in the top halfword of the destination register, shifted by one bit to the right
causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2
; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R4 and writes halved result to bottom halfword of R7

SHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
; of R3 and writes halved result to top halfword of RO
; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of RO.

Atmel SAMAE [DATASHEET] 112

11157C-ATARM-25-Jul-13

12.6.5.12 SHSUB16 and SHSUBS
Signed Halving Subtract 16 and Signed Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:

SHSUBL16 Signed Halving Subtract 16.

SHSUBS Signed Halving Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The SHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfwords of the first operand.
2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.
The SHSUBBS instruction:
1. Subtracts each byte of the second operand from the corresponding byte of the first operand,
2. Shuffles the result by one bit to the right, halving the data,
3. Writes the corresponding signed byte results in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition Flags
These instructions do not change the flags.

Examples

SHSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1
Subtracts bytes of RO from corresponding byte in R5,

and writes to corresponding byte in R4.

SHSUB8 R4, RO, R5

Atmel SAM4E [DATASHEET] 113

11157C-ATARM-25-Jul-13

12.6.5.13 SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
SSUB16 Performs two 16-bit signed integer subtractions.
SSUB8 Performs four 8-bit signed integer subtractions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to change endianness of data:
The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of the first operand

2. Writes the difference result of two signed halfwords in the corresponding halfword of the destination register.
The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first operand

2. Writes the difference result of four signed bytes in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

SSUB16 R1, RO Subtracts halfwords in RO from corresponding halfword
of R1 and writes to corresponding halfword of R1
Subtracts bytes of R5 from corresponding byte in

RO, and writes to corresponding byte of R4.

SSUB8 R4, RO, R5

Atmel SAMAE [DATASHEET] 114

11157C-ATARM-25-Jul-13

12.6.5.14 SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is any of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SASX instruction:
1. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
2. Writes the signed result of the addition to the top halfword of the destination register.
3. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
4. Writes the signed result of the subtraction to the bottom halfword of the destination register.

The SSAX instruction:
1. Subtracts the signed bottom halfword of the second operand from the top signed highword of the first operand.
2. Writes the signed result of the addition to the bottom halfword of the destination register.
3. Adds the signed top halfword of the first operand with the signed bottom halfword of the second operand.
4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of R4
; and writes to bottom halfword of RO

SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 with bottom halfword of R2 and
; writes to top halfword of R7.

Atmel SAM4E [DATASHEET] 115

11157C-ATARM-25-Jul-13

12.6.5.15 TST and TEQ
Test bits and Test Equivalence.

Syntax
TST{cond} Rn, Operand2
TEQ{cond} Rn, Operand2

where

cond is an optional condition code, see “Conditional Execution” .

Rn is the register holding the first operand.

Operand2 is a flexible second operand. See “Flexible Second Operand” for details of the
options

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on the result, but
do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This is the same as
the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that has that bit set to 1 and all
other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of Operand2. This is the
same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive OR of the sign
bits of the two operands.

Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions:

e Update the N and Z flags according to the result

e Can update the C flag during the calculation of Operand2, see “Flexible Second Operand”

e Do not affect the V flag.
Examples

TST RO, #0x3F8 ; Perform bitwise AND of RO value to Ox3F8,
; APSR is updated but result is discarded

TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in R9, APSR is updated but result is discarded.

Atmel SAMAE [DATASHEET] 116

11157C-ATARM-25-Jul-13

12.6.5.16 UADD16 and UADDS8
Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UADD16 Performs two 16-bit unsigned integer additions.
UADDS8 Performs four 8-bit unsigned integer additions.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data:
The UADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Writes the unsigned result in the corresponding halfwords of the destination register.
The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1,
; writes to corresponding halfword of R1
UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

writes to corresponding byte in R4.

Atmel SAMAE [DATASHEET] 117

11157C-ATARM-25-Jul-13

12.6.5.17 UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UASX instruction:
1. Subtracts the top halfword of the second operand from the bottom halfword of the first operand.
2. Writes the unsigned result from the subtraction to the bottom halfword of the destination register.
3. Adds the top halfword of the first operand with the bottom halfword of the second operand.
4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:
1. Adds the bottom halfword of the first operand with the top halfword of the second operand.
2. Writes the unsigned result of the addition to the bottom halfword of the destination register.
3. Subtracts the bottom halfword of the second operand from the top halfword of the first operand.
4. Writes the unsigned result from the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5 and
; writes to top halfword of RO
; Subtracts bottom halfword of R5 from top halfword of RO
; and writes to bottom halfword of RO

USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword of R3
; and writes to bottom halfword of R7
; Adds top halfword of R3 to bottom halfword of R2 and
; writes to top halfword of R7.

Atmel SAM4E [DATASHEET] 118

11157C-ATARM-25-Jul-13

12.6.5.18 UHADD16 and UHADDS8
Unsigned Halving Add 16 and Unsigned Halving Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:
op is any of:
UHADD16 Unsigned Halving Add 16.
UHADDS8 Unsigned Halving Add 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the register holding the first operand.
Rm is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing the result to the destination
register:

The UHADD16 instruction:
1. Adds each halfword from the first operand to the corresponding halfword of the second operand.
2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.
The UHADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.
3. Writes the unsigned results in the corresponding byte in the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
; and writes halved result to corresponding halfword
; in R7

UHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and
; writes halved result to corresponding byte in R4.

Atmel SAM4E [DATASHEET] 119

11157C-ATARM-25-Jul-13

12.6.5.19 UHASX and UHSAX
Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:
op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.
Writes the halfword result of the addition to the top halfword of the destination register.
Subtracts the top halfword of the second operand from the bottom highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.
The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

ok wDbd

Writes the halfword result of the subtraction in the top halfword of the destination register.
Adds the bottom halfword of the first operand with the top halfword of the second operand.
Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

o wbD

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2
and writes halved result to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of
R7 and writes halved result to bottom halfword of R7
Subtracts bottom halfword of R5 from top halfword of
R3 and writes halved result to top halfword of RO
Adds top halfword of R5 to bottom halfword of R3 and

writes halved result to bottom halfword of RO.

UHSAX RO, R3, R5

Atmel SAM4E [DATASHEET] 120

11157C-ATARM-25-Jul-13

12.6.5.20 UHSUB16 and UHSUBS
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm
where:
op is any of:
UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
UHSUBS Performs four unsigned 8-bit integer additions, halves the results, and
writes the results to the destination register.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing the result to the destination
register:
The UHSUB16 instruction:
1. Subtracts each halfword of the second operand from the corresponding halfword of the first operand.
2. Shuffles each halfword result to the right by one bit, halving the data.
3. Writes each unsigned halfword result to the corresponding halfwords in the destination register.
The UHSUBS instruction:
1. Subtracts each byte of second operand from the corresponding byte of the first operand.
2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition Flags
These instructions do not change the flags.

Examples
UHSUB16 R1, RO ; Subtracts hal fwords in RO from correspondi ng hal fword of
; RL and wites halved result to corresponding halfwrd in R1
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO and
; wites halved result to corresponding byte in R4.

Atmel SAMAE [DATASHEET] 121

11157C-ATARM-25-Jul-13

12.6.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second operand, according to the values of
the GE flags.
Syntax

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>
where:
c, q are standard assembler syntax fields.
Rd is the destination register.
Rn is the first register holding the operand.
Rm is the second register holding the operand.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of either the first or second oper-
and register.

Restrictions

None.

Condition Flags

These instructions do not change the flags.

Examples
SADD16 RO, R1, R2 ; Set GE bits based on result
SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE.

12.6.5.22 USADS

Unsigned Sum of Absolute Differences

Syntax
USAD8{cond}{Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

The USADS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the absolute values of the differences together.
3. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USAD8 R1, R4, RO ; Subtracts each byte in RO from corresponding byte of R4
; adds the differences and writes to R1

Atmel SAMAE [DATASHEET] 122

11157C-ATARM-25-Jul-13

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO,
; adds the differences and writes to RO.

12.6.5.23 USADAS

Unsigned Sum of Absolute Differences and Accumulate

Syntax
USADA8{cond}{Rd,} Rn, Rm, Ra
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Ra is the register that contains the accumulation value.
Operation

The USADAS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples

USADA8 R1, RO, R6 ; Subtracts bytes in RO from correspondi ng hal fword of Rl

; adds differences, adds value of R6, wites to Rl

USADA8 R4, RO, R5, R2 ; Subtracts bytes of R5 fromcorresponding byte in RO

: adds differences, adds value of R2 wites to R4.

12.6.5.24 USUB16 and USUBS8

Unsigned Subtract 16 and Unsigned Subtract 8

Syntax
op{cond}{Rd,} Rn, Rm

where
op is any of:

USUB16 Unsigned Subtract 16.

USUBS8 Unsigned Subtract 8.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the destination register:
The USUBL16 instruction:

Atmel SAMAE [DATASHEET] 123

11157C-ATARM-25-Jul-13

1. Subtracts each halfword from the second operand register from the corresponding halfword of the first operand
register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:
1. Subtracts each byte of the second operand register from the corresponding byte of the first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
USUB16 R1, RO ; Subtracts halfwords in RO from correspondi ng hal fword of Rl
; and wites to corresponding halfword in RIUSUB8 R4, RO, R5
; Subtracts bytes of R5 from corresponding byte in RO and
; Wwites to the corresponding byte in R4.

Atmel SAMAE [DATASHEET] 124

11157C-ATARM-25-Jul-13

12.6.6 Multiply and Divide Instructions

The table below shows the multiply and divide instructions:

Table 12-21. Multiply and Divide Instructions

Mnemonic Description

MLA Multiply with Accumulate, 32-bit result

MLS Multiply and Subtract, 32-bit result

MUL Multiply, 32-bit result

SDIV Signed Divide

SMLA[B,T] Signed Multiply Accumulate (halfwords)

SMLAD, SMLADX Signed Multiply Accumulate Dual

SMLAL Signed Multiply with Accumulate (32x32+64), 64-bit result
SMLAL[B,T] Signed Multiply Accumulate Long (halfwords)
SMLALD, SMLALDX Signed Multiply Accumulate Long Dual
SMLAWI[B|T] Signed Multiply Accumulate (word by halfword)
SMLSD Signed Multiply Subtract Dual

SMLSLD Signed Multiply Subtract Long Dual

SMMLA Signed Most Significant Word Multiply Accumulate

SMMLS, SMMLSR

Signed Most Significant Word Multiply Subtract

SMUAD, SMUADX

Signed Dual Multiply Add

SMULI[B,T] Signed Multiply (word by halfword)
SMMUL, SMMULR Signed Most Significant Word Multiply
SMULL Signed Multiply (32x32), 64-bit result

SMULWB, SMULWT

Signed Multiply (word by halfword)

SMUSD, SMUSDX

Signed Dual Multiply Subtract

ubIv

Unsigned Divide

Unsigned Multiply Accumulate Accumulate Long

UMAAL (32x32+32+32), 64-bit result
UMLAL Unsigned Multiply with Accumulate (32x32+64), 64-bit result
UMULL Unsigned Multiply (32x32), 64-bit result

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

125

12.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a 32-bit result.

Syntax
MUL{S}{cond} {Rd,} Rn, Rm
MLA{cond} Rd, Rn, Rm, Ra
MLS{cond} Rd, Rn, Rm, Ra

Multiply
Multiply with accumulate
Multiply with subtract

where:

cond is an optional condition code, see “Conditional Execution” .

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see “Conditional Execution” .

Rd is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm are registers holding the values to be multiplied.

Ra is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least significant 32
bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra, and places the
least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7
e Rd must be the same as Rm
e The cond suffix must not be used.

Condition Flags

If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result
e Does not affect the C and V flags.

Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 X R6)
/ItmeL SAMA4E [DATASHEET)] 126

11157C-ATARM-25-Jul-13

12.6.6.2 UMULL, UMAAL, UMLAL
Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMAAL Unsigned Long Multiply with Accumulate Accumulate.
UMLAL Unsigned Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers. For UMAAL, UMLAL and UMLAL they also hold
the accumulating value.

Rn, Rm are registers holding the first and second operands.
Operation
These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Writes the least significant 32 bits of the result in RdLo.
e Writes the most significant 32 bits of the result in RdHi.
The UMAAL instruction:
e Multiplies the two unsigned 32-bit integers in the first and second operands.
e Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
e Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
e Writes the top 32-bits of the result to RdHi.
e Writes the lower 32-bits of the result to RdLo.
The UMLAL instruction:
e Multiplies the two unsigned integers in the first and second operands.
e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Miultiplies R5 and R6, wites the top 32 bits to R4
: and the bottom 32 bits to RO
UVAAL R3, R6, R2, R7 ; Miltiplies R2 and R7, adds R6, adds R3, wites the
; top 32 bits to R6, and the bottom 32 bits to R3
UMLAL R2, R1, R3, R5 ; Miultiplies RS and R3, adds RL: R2, wites to Rl: R2.
SAM4E [DATASHEET)]
/ItmeL 11157C-ATARM-25-Jul-13

127

12.6.6.3 SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax
op{XY}{cond} Rd, Rn, Rm
op{Y}H{cond} Rd, Rn, Rm, Ra

where:
op is one of:
SMLA Signed Multiply Accumulate Long (halfwords).

X and Y specifies which half of the source registers Rn and Rm are used as the
first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used

SMLAW Signed Multiply Accumulate (word by halfword).

Y specifies which half of the source register Rm is used as the second multiply
operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.

If Y is B, then the bottom halfword, bits [15:0] of Rm is used.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:
e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.
e Writes the result of the multiplication and addition in Rd.
The non-specified halfwords of the source registers are ignored.
The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
e The top signed halfword of Rm, T instruction suffix.
e The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag in the APSR. No overflow
can occur during the multiplication.

Restrictions

In these instructions, do not use SP and do not use PC.
Condition Flags

If an overflow is detected, the Q flag is set.

Examples

Atmel SAMAE [DATASHEET] 128

11157C-ATARM-25-Jul-13

SMLABB R5, R6, R4, Rl ; Miltiplies bottomhal fwords of R6 and R4, adds
: Rl and wites to R5

SMLATB R5, R6, R4, RL ; Miltiplies top halfword of R6 with bottom hal fword
; of R4, adds Rl and wites to R5

SMLATT R5, R6, R4, RL ; Miltiplies top halfwords of R6 and R4, adds
; RL and wites the sumto R5

SMLABT R5, R6, R4, Rl ; Miltiplies bottomhal fword of R6 with top hal fword

; of R4, adds Rl and wites to R5
SMLABT R4, R3, R2 ; Miultiplies bottomhal fword of R4 with top hal fword of
; R3, adds R2 and wites to R4
SMLAWB R10, R2, R5, R3 ; Miultiplies R2 with bottom hal fword of R5, adds
; RBtothe result and wites top 32-bits to R10
SMAW R10, R2, R, R5 ; Miultiplies R2 with top hal fwrd of Rl, adds R5
; and wites top 32-bits to R10.

12.6.6.4 SMLAD
Signed Multiply Accumulate Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra ;
where:
op is one of:
SMLAD Signed Multiply Accumulate Dual.
SMLADX Signed Multiply Accumulate Dual Reverse.
X specifies which halfword of the source register Rn is used as the multiply
operand.
If X is omitted, the multiplications are bottom x bottom and top x top.
If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register holding the values to be multiplied.
Rm the second operand register.
Ra is the accumulate value.
Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit values. The SMLAD and
SMLADX instructions:

e If Xis not present, multiply the top signed halfword value in Rn with the top signed halfword of Rm and the bottom
signed halfword values in Rn with the bottom signed halfword of Rm.

e Orif X is present, multiply the top signed halfword value in Rn with the bottom signed halfword of Rm and the
bottom signed halfword values in Rn with the top signed halfword of Rm.

Add both multiplication results to the signed 32-bit value in Ra.
Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not change the flags.

Examples
SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
; corresponding halfwords in R1, adds R5 and

Atmel SAMAE [DATASHEET] 129

11157C-ATARM-25-Jul-13

; writes to R10
SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
; RO.
12.6.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed Multiply Accumulate Long
Dual.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm

where:
op is one of:
MLAL Signed Multiply Accumulate Long.
SMLAL Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are used as
the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom x bottom and top x top.

If X is present, the multiplications are bottom x top and top x bottom.
cond is an optional condition code, see “Conditional Execution” .

RdHi, RdLo are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLA
LDX, they also hold the accumulating value.

Rn, Rm are registers holding the first and second operands.

Operation

The SMLAL instruction:
e Multiplies the two’s complement signed word values from Rn and Rm.
e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:
e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four halfword two’s complement signed
16-bit integers. These instructions:

Atmel SAM4E [DATASHEET] 130

11157C-ATARM-25-Jul-13

e If Xis not present, multiply the top signed halfword value of Rn with the top signed halfword of Rm and the bottom
signed halfword values of Rn with the bottom signed halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed halfword of Rm and the
bottom signed halfword values of Rn with the top signed halfword of Rm.

Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create the resulting 64-bit product.
Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Condition Flags
These instructions do not affect the condition code flags.

Examples

SMLAL R4, R5, R3, R8 ; Miltiplies R3 and R8, adds R5: R4 and wites to
. R5:R4

SMLALBT R2, Rl, R6, R7 ; Miltiplies bottomhal fword of R6 with top
; hal fword of R7, sign extends to 32-bit, adds
; RL:R2 and wites to RL: R2

SMLALTB R2, Rl, R6, R7 ; Miltiplies top halfword of R6 with bottom
; hal fword of R7,sign extends to 32-bit, adds Rl:R2
: and wites to RL: R2

SMLALD R6, R8, R5, RL ; Miltiplies top halfwords in R5 and Rl and bottom
; hal fwords of R5 and Rl, adds R8:R6 and wites to
; R8:R6

SMLALDX R6, R8, R5, R1 ; Miltiplies top halfword in R5 with bottom
; hal fword of R1, and bottom halfword of R5 with
; top halfword of Rl, adds R8:R6 and wites to
;. R8: R6.

12.6.6.6 SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual

Syntax
op{X}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMLSD Signed Multiply Subtract Dual.
SMLSDX Signed Multiply Subtract Dual Reversed.
SMLSLD Signed Multiply Subtract Long Dual.
SMLSLDX Signed Multiply Subtract Long Dual Reversed.
SMLAW Signed Multiply Accumulate (word by halfword).
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Ra is the register holding the accumulate value.
Operation

Atmel SAMAE [DATASHEET] 131

11157C-ATARM-25-Jul-13

The SMLSD instruction interprets the values from the first and second operands as four signed halfwords. This
instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.
The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:
e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit halfword multiplications.
e Subtracts the result of the upper halfword multiplication from the result of the lower halfword multiplication.
e Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
e Writes the 64-bit result of the addition to the RdHi and RdLo.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur during the multiplications or
subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom
halfword of R5, multiplies top halfword of R4
with top halfword of R5, subtracts second from
first, adds R6, writes to RO
Multiplies bottom halfword of R3 with top
halfword of R2, multiplies top halfword of R3
with bottom halfword of R2, subtracts second from
first, adds RO, writes to R1
Multiplies bottom halfword of R6 with bottom
halfword of R2, multiplies top halfword of R6
with top halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3
Multiplies bottom halfword of R6 with top
halfword of R2, multiplies top halfword of R6
with bottom halfword of R2, subtracts second from
first, adds R6:R3, writes to R6:R3.

SMLSDX R1, R3, R2, RO

SMLSLD R3, R6, R2, R7

SMLSLDX R3, R6, R2, R7

Atmel SAM4E [DATASHEET] 132

11157C-ATARM-25-Jul-13

12.6.6.7 SMMLA and SMMLS
Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word Multiply Subtract

Syntax
op{R}{cond} Rd, Rn, Rm, Ra
where:
op is one of:
SMMLA Signed Most Significant Word Multiply Accumulate.
SMMLS Signed Most Significant Word Multiply Subtract.
If the X is omitted, the multiplications are bottom x bottom and top x top.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second multiply operands.

Ra is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLA instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Adds the value of Ra to the signed extracted value.

e Writes the result of the addition in Rd.
The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.
The SMMLS instruction:

e Multiplies the values in Rn and Rm.

e Optionally rounds the result by adding 0x80000000.
e Extracts the most significant 32 bits of the result.
e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.
Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

Examples
SMMLA RO, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits, adds
; R6, truncates and writes to RO
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits, adds
; R4, rounds and writes to R6
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
; Subtracts R7, rounds and writes to R3

Atmel SAM4E [DATASHEET] 133

11157C-ATARM-25-Jul-13

SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.

12.6.6.8 SMMUL
Signed Most Significant Word Multiply

Syntax
op{R}{cond} Rd, Rn, Rm

where:

op is one of:

SMMUL Signed Most Significant Word Multiply.

R is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit signed integers. The SMMUL
instruction:

e Multiplies the values from Rn and Rm.

e Optionally rounds the result, otherwise truncates the result.

e Writes the most significant signed 32 bits of the result in Rd.
Restrictions

In this instruction:
e donotuse SP and do not use PC.

Condition Flags
This instruction does not affect the condition code flags.

Examples
SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
; and writes to RO
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32 bits
; and writes to R6.

Atmel SAMAE [DATASHEET] 134

11157C-ATARM-25-Jul-13

12.6.6.9 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract

Syntax
op{X}{cond} Rd, Rn, Rm

where:
op is one of:
SMUAD Signed Dual Multiply Add.
SMUADX Signed Dual Multiply Add Reversed.
SMUSD Signed Dual Multiply Subtract.
SMUSDX Signed Dual Multiply Subtract Reversed.
If X is present, the multiplications are bottom x top and top x bottom.
If the X is omitted, the multiplications are bottom x bottom and top x top.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two signed halfwords in each
operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.
The SMUSD instruction interprets the values from the first and second operands as two’s complement signed integers.
This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.

Condition Flags
Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD RO, R4, R5 ; Miultiplies bottomhal fword of R4 with the bottom

; hal fword of R5, adds multiplication of top hal fword
; of RA with top halfword of R5, wites to RO

SMUADX R3, R7, R4 ; Miltiplies bottomhal fword of R7 with top hal fword

; of R4, adds nultiplication of top halfword of R7
; with bottomhal fword of R4, wites to R3

SMUSD R3, R6, R2 ; Miltiplies bottomhal fword of R4 with bottom hal fword

; of R6, subtracts multiplication of top hal fwrd of R6
; with top halfword of R3, wites to R3

SMUSDX R4, R5, R3 ; Miltiplies bottomhalfword of R65 with top hal fword of

; R3, subtracts multiplication of top hal fword of R5
; Wth bottomhal fword of R3, wites to R4.

Atmel SAM4E [DATASHEET] 135

11157C-ATARM-25-Jul-13

12.6.6.10 SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword)

Syntax
op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} Rd. Rn, Rm

For SMULXY only:
op is one of:
SMUL{XY} Signed Multiply (halfwords).

X and Y specify which halfword of the source registers Rn and Rm is used as

the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0] of Rn is used.

If Xis T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the bottom
halfword, bits [15:0], of Rm is used.

If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword).

Y specifies which halfword of the source register Rm is used as the second
multiply operand.

If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.

If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

Rn, Rm are registers holding the first and second operands.
Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn and Rm as four signed 16-bit
integers. These instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Writes the 32-bit result of the multiplication in Rd.
The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed integer and Rm as two
halfword 16-bit signed integers. These instructions:

e Multiplies the first operand and the top, T suffix, or the bottom, B suffix, halfword of the second operand.

e Writes the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
e Do not use SP and do not use PC.
e RdHi and RdLo must be different registers.

Examples
SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO
SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with the
; bottom halfword of R5, multiplies results and
; writes to RO

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the top
; halfword of R5, multiplies results and writes
; to RO

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the

; bottom halfword of R5, multiplies results and

Atmel SAMAE [DATASHEET] 136

11157C-ATARM-25-Jul-13

; and writes to RO

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of R3,

; extracts top 32 bits and writes to R4.
12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
where:
op is one of:
UMULL Unsigned Long Multiply.
UMLAL Unsigned Long Multiply, with Accumulate.
SMULL Signed Long Multiply.
SMLAL Signed Long Multiply, with Accumulate.
cond is an optional condition code, see “Conditional Execution” .
RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating
value.
Rn, Rm are registers holding the operands.
Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers and
places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these integers, adds the
64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It multiplies these
integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo, and writes the result back to
RdHi and RdLo.

Restrictions
In these instructions:
e Do not use SP and do not use PC
e RdHi and RdLo must be different registers.
Condition Flags
These instructions do not affect the condition code flags.

Examples
R5 x R6

UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) =
= (R5,R4) + R3 x R8

SMLAL R4, R5, R3, R8 ; Signed (R5,R4)

Atmel SAM4E [DATASHEET] 137

11157C-ATARM-25-Jul-13

12.6.6.12 SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax
SDIV{cond} {Rd,} Rn, Rm
uDIv{cond} {Rd,} Rn, Rm
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.
Rm is a register holding the divisor.
Operation

SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards zero.
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
SDIV RO, R2, R4
ublv R8, R8, R1

Signed divide, RO = R2/R4
Unsigned divide, R8 = R8/R1

Atmel SAM4E [DATASHEET] 138

11157C-ATARM-25-Jul-13

12.6.7 Saturating Instructions

The table below shows the saturating instructions:

Table 12-22. Saturating Instructions

Mnemonic Description

SSAT Signed Saturate

SSAT16 Signed Saturate Halfword

USAT Unsigned Saturate

USAT16 Unsigned Saturate Halfword

QADD Saturating Add

QSuUB Saturating Subtract

QSUB16 Saturating Subtract 16

QASX Saturating Add and Subtract with Exchange

QSAX Saturating Subtract and Add with Exchange

QDADD Saturating Double and Add

QDsuB Saturating Double and Subtract

UQADD16 Unsigned Saturating Add 16

UQADDS Unsigned Saturating Add 8

UQASX Unsigned Saturating Add and Subtract with Exchange
UQSAX Unsigned Saturating Subtract and Add with Exchange
UQSUB16 Unsigned Saturating Subtract 16

UQSuUB8 Unsigned Saturating Subtract 8

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2", the result returned is -2"*
e Ifthe value to be saturated is greater than 2"1-1, the result returned is 2"*-1
e Otherwise, the result returned is the same as the value to be saturated.
For unsigned n-bit saturation, this means that:
e If the value to be saturated is less than 0, the result returned is 0
e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.
If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the instruction

sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q flag to 0, the MSR instruction
must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .

Atmel SAM4E [DATASHEET] 139

11157C-ATARM-25-Jul-13

12.6.7.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

where:

op

cond

Rd

n

n ranges from 1
to 32 for SSAT
Rm

shift #s

ASR #s
LSL #s
Operation

is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

is an optional condition code, see “Conditional Execution” .
is the destination register.

specifies the bit position to saturate to:

n ranges from 0 to 31 for USAT.

is the register containing the value to saturate.

is an optional shift applied to Rm before saturating. It must be one of the
following:

where s is in the range 1 to 31.
where s is in the range 0 to 31.

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range -2"* £ x £ 2"1-1.

The USAT instruction applies the specified shift, then saturates to the unsigned range 0 £ x £ 2"-1.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples
SSAT

USATNE RO, #7, R5

Atmel

R7, #16, R7, LSL #4

Logical shift left value in R7 by 4, then
saturate it as a signed 16-bit value and
write it back to R7

Conditionally saturate value in R5 as an
; unsigned 7 bit value and write it to RO.

PR RN

SAMA4E [DATASHEET] 140

11157C-ATARM-25-Jul-13

12.6.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm

where:

op is one of:
SSAT16 Saturates a signed halfword value to a signed range.
USAT16 Saturates a signed halfword value to an unsigned range.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

n specifies the bit position to saturate to:

n ranges from 1 n ranges from 0 to 15 for USAT.

to 16 for SSAT

Rm is the register containing the value to saturate.

Operation

The SSAT16 instruction:

Saturates two signed 16-bit halfword values of the register with the value to saturate from selected by the bit position in n.
Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

Saturates two unsigned 16-bit halfword values of the register with the value to saturate from selected by the bit position
inn.

Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 Saturates the top and bottom highwords of R2
as 9-bit values, writes to corresponding halfword
of R7
Conditionally saturates the top and bottom
halfwords of R5 as 13-bit values, writes to

corresponding halfword of RO.

USAT16NE RO, #13, R5

NI N N ouT owr owa

Atmel SAMAE [DATASHEET] 141

11157C-ATARM-25-Jul-13

12.6.7.3 QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:
op is one of:
QADD Saturating 32-bit add.
QADDS8 Saturating four 8-bit integer additions.
QADD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
QSUBS8 Saturating four 8-bit integer subtraction.
QSUB16 Saturating two 16-bit integer subtraction.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second operands and then writes a signed
saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the result to the signed range -
21 £ x £ 211, where x is given by the number of bits applied in the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs, the QADD and
QSUB instructions set the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. The 8-bit and 16-bit QADD
and QSUB instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used; see “MSR” .

To read the state of the Q flag, the MRS instruction must be used; see “MRS” .
Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
; saturates to 8 bits and writes to corresponding
; byte of R3

QSuB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
; halfword of R2, saturates to 16 bits, writes to
; corresponding halfword of R4

QsuB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
; In R2, saturates to 8 bits, writes to corresponding
; byte of R4.

Atmel SAMAE [DATASHEET] 142

11157C-ATARM-25-Jul-13

12.6.7.4 QASX and QSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The QASX instruction:
1. Adds the top halfword of the source operand with the bottom halfword of the second operand.
2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2'° < x < 2'® — 1, where x
equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x <251, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
—215 <x < 25— 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —2%° < x < 215 — 1, where x
equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
saturates to 16 bits, writes to top halfword of R7
Subtracts top highword of R2 from bottom halfword of
R4, saturates to 16 bits and writes to bottom halfword
of R7
Subtracts bottom halfword of R5 from top halfword of
R3, saturates to 16 bits, writes to top halfword of RO
Adds bottom halfword of R3 to top halfword of R5,
saturates to 16 bits, writes to bottom halfword of RO.

QSAX RO, R3, R5

Atmel SAMAE [DATASHEET] 143

11157C-ATARM-25-Jul-13

12.6.7.5 QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:
op is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm, Rn are registers holding the first and second operands.
Operation

The QDADD instruction:
e Doubles the second operand value.
e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:
e Doubles the second operand value.
e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit signed integer range —23* < x <
2%1_ 1. If saturation occurs in either operation, it sets the Q flag in the APSR.

Restrictions
Do not use SP and do not use PC.
Condition Flags

If saturation occurs, these instructions set the Q flag to 1.

Examples
QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; saturates to 32 bits, writes to R7
QDSuUB RO, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits

; from R5, saturates to 32 bits, writes to RO.

Atmel SAMAE [DATASHEET] 144

11157C-ATARM-25-Jul-13

12.6.7.6 UQASX and UQSAX
Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm, Rn

where:
type is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn, Rm are registers holding the first and second operands.
Operation

The UQASX instruction:
1. Adds the bottom halfword of the source operand with the top halfword of the second operand.
2. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0<x <2 _1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 216 — 1, where x
equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:
1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.
2. Adds the bottom halfword of the first operand with the top halfword of the second operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range 0 < x < 21 — 1, where x
equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0 < x < 218 — 1, where x equals
16, to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom hal fword of R2,

; saturates to 16 bits, wites to top hal fword of R7
; Subtracts top hal fword of R2 from bottom hal fword of
; R4, saturates to 16 bits, wites to bottom hal fword of R7

UQSAX RO, R3, R5 ; Subtracts bottom hal fword of R5 fromtop hal fword of R3,

; saturates to 16 bits, wites to top hal fword of RO
; Adds bottom hal fword of R4 to top hal fword of RS
; saturates to 16 bits, wites to bottom hal fword of RO.

Atmel SAMAE [DATASHEET] 145

11157C-ATARM-25-Jul-13

12.6.7.7 UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:
UQADDS Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUBS Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the destination
register.

The UQADD16 instruction:
e Adds the respective top and bottom halfwords of the first and second operands.

e Saturates the result of the additions for each halfword in the destination register to the unsigned range 0 £ x £ 216-
1, where x is 16.

The UQADDS instruction:
e Adds each respective byte of the first and second operands.

e Saturates the result of the addition for each byte in the destination register to the unsigned range 0 £ x £ 28-1,
where x is 8.

The UQSUB16 instruction:
e Subtracts both halfwords of the second operand from the respective halfwords of the first operand.
e Saturates the result of the differences in the destination register to the unsigned range 0 £ x £ 216-1, where x is 16.

The UQSUBS instructions:
e Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

e Saturates the results of the differences for each byte in the destination register to the unsigned range 0 £ x £ 28-1,
where x is 8.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding hal fword in R2,

; saturates to 16 bits, wites to corresponding hal fwrd of R7

UQADD8 R4, R2, RS ; Adds bytes of R2 to corresponding byte of R5, saturates
; to 8 bits, wites to correspondi ng bytes of R4

U@suUB16 R6, R3, RO ; Subtracts hal fwords in RO from correspondi ng hal fword
; in R3, saturates to 16 bits, wites to corresponding
; halfword in R6

uQsuUB8 Rl1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of R5,
; saturates to 8 bits, wites to corresponding byte of RIL.

/It m eL SAM4E [DATASHEET)] 146

11157C-ATARM-25-Jul-13

12.6.8 Packing and Unpacking Instructions

The table below shows the instructions that operate on packing and unpacking data:

Table 12-23. Packing and Unpacking Instructions

Mnemonic Description

PKH Pack Halfword

SXTAB Extend 8 bits to 32 and add
SXTAB16 Dual extend 8 bits to 16 and add
SXTAH Extend 16 bits to 32 and add
SXTB Sign extend a byte

SXTB16 Dual extend 8 bits to 16 and add
SXTH Sign extend a halfword

UXTAB Extend 8 bits to 32 and add
UXTAB16 Dual extend 8 bits to 16 and add
UXTAH Extend 16 bits to 32 and add
UXTB Zero extend a byte

UXTB16 Dual zero extend 8 bits to 16 and add
UXTH Zero extend a halfword

Atmel SAMAE [DATASHEET] 147

11157C-ATARM-25-Jul-13

12.6.8.1 PKHBT and PKHTB
Pack Halfword

Syntax
op{cond} {Rd}, Rn, Rm {, LSL #imm}
op{cond} {Rd}, Rn, Rm {, ASR #imm}

where:
op is one of:
PKHBT Pack Halfword, bottom and top with shift.
PKHTB Pack Halfword, top and bottom with shift.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register
Rm is the second operand register holding the value to be optionally shifted.
imm is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL a left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB
ASR an arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.
Operation

The PKHBT instruction:
1. Writes the value of the bottom halfword of the first operand to the bottom halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the top halfword of the destination register.
The PKHTB instruction:
1. Writes the value of the top halfword of the first operand to the top halfword of the destination register.
2. If shifted, the shifted value of the second operand is written to the bottom halfword of the destination register.
Restrictions
Rd must not be SP and must not be PC.
Condition Flags
This instruction does not change the flags.

Examples
PKHBT R3, R4, R5 LSL #0 ; Wites bottomhalfword of R4 to bottom hal fword of
; R3, wites top hal fword of R5, unshifted, to top
; hal fword of R3
PKHTB R4, RO, R2Z ASR #1 ; Wites R2 shifted right by 1 bit to bottom hal fword
; of R4, and wites top halfword of RO to top
: hal fword of R4.

Atmel SAMAE [DATASHEET] 148

11157C-ATARM-25-Jul-13

12.6.8.2 SXT and UXT
Sign extend and Zero extend.

Syntax
op{cond} {Rd,} Rm {, ROR #n}
op{cond} {Rd}, Rm {, ROR #n}

where:
op is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
SXTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UXTB16 Zero extends two 8-bit values to two 16-bit values.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rm is the register holding the value to extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
Operation

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
e SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.
SXTBL16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.
e UXTBL16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom hal fword of
; of result, sign extends to 32 bits and wites to R4
UXTB R3, R10 ; Extracts |owest byte of value in RLO, zero extends, and
; wites to R3.

Atmel SAMAE [DATASHEET] 149

11157C-ATARM-25-Jul-13

12.6.8.3 SXTA and UXTA
Signed and Unsigned Extend and Add

Syntax
op{cond} {Rd,} Rn, Rm {, ROR #n}
op{cond} {Rd,} Rn, Rm {, ROR #n}
where:
op is one of:
SXTAB Sign extends an 8-bit value to a 32-bit value and add.
SXTAH Sign extends a 16-bit value to a 32-bit value and add.
SXTABL16 Sign extends two 8-bit values to two 16-bit values and add.
UXTAB Zero extends an 8-bit value to a 32-bit value and add.
UXTAH Zero extends a 16-bit value to a 32-bit value and add.
UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the first operand register.
Rm is the register holding the value to rotate and extend.
ROR #n is one of:
ROR #8 Value from Rm is rotated right 8 bits.
ROR #16 Value from Rm is rotated right 16 bits.
ROR #24 Value from Rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

e SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.
SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.
UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.
SXTABL16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.
e UXTABLI16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword, sign extends to 32 bits, adds
; R8,and writes to R4

Atmel SAM4E [DATASHEET] 150

11157C-ATARM-25-Jul-13

UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends
; to 32 bits, adds R4, and writes to R3.

12.6.9 Bitfield Instructions

The table below shows the instructions that operate on adjacent sets of bits in registers or bitfields:

Table 12-24. Packing and Unpacking Instructions

Mnemonic | Description

BFC Bit Field Clear

BFI Bit Field Insert

SBFX Signed Bit Field Extract
SXTB Sign extend a byte

SXTH Sign extend a halfword
UBFX Unsigned Bit Field Extract
UXTB Zero extend a byte

UXTH Zero extend a halfword

12.6.9.1 BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax
BFC{cond} Rd, #lIsb, #width
BFI{cond} Rd, Rn, #lIsb, #width

where:

cond is an optional condition code, see “Conditional Execution” .

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0to 31.

width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd are
unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit position Isb,
with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.
Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to O
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
; bit O to bit 11 from R2.

Atmel SAM4E [DATASHEET] 151

11157C-ATARM-25-Jul-13

12.6.9.2 SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax
SBFX{cond} Rd, Rn, #lsb, #width
UBFX{cond} Rd, Rn, #lsb, #width
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.
Rn is the source register.
Isb is the position of the least significant bit of the bitfield. Isb must be in the range
0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.
Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples
SBFX RO, R1, #20, #4

UBFX R8, R11, #9, #10 ;

Atmel

Extract bit 20 to bit 23 (4 bits) fromRl and sign
extend to 32 bits and then wite the result to RO.
Extract bit 9 to bit 18 (10 bits) from Rl1 and zero
extend to 32 bits and then wite the result to R8.

SAMA4E [DATASHEET] 152

11157C-ATARM-25-Jul-13

12.6.9.3 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}
UXTextend{cond} {Rd}, Rm {, ROR #n}

where:

extend

cond
Rd

Rm
ROR #n

Operation

is one of:

B Extends an 8-bit value to a 32-bit value.

H Extends a 16-bit value to a 32-bit value.

is an optional condition code, see “Conditional Execution” .
is the destination register.

is the register holding the value to extend.

is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:
1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:

Restrictions

SXTB extracts bits[7:0] and sign extends to 32 bits.
UXTB extracts bits[7:0] and zero extends to 32 bits.
SXTH extracts bits[15:0] and sign extends to 32 bits.
UXTH extracts bits[15:0] and zero extends to 32 bits.

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the | ower

; hal fword of the result and then sign extend to
; 32 bits and wite the result to R4.

UXTB R3, R10 ; Extract |owest byte of the value in RLO and zero

Atmel

; extend it, and wite the result to R3.

SAMA4E [DATASHEET] 153

11157C-ATARM-25-Jul-13

12.6.10 Branch and Control Instructions

The table below shows the branch and control instructions:

Table 12-25. Branch and Control Instructions

Mnemonic | Description

B Branch

BL Branch with Link

BLX Branch indirect with Link

BX Branch indirect

CBNz Compare and Branch if Non Zero
cBz Compare and Branch if Zero

IT If-Then

TBB Table Branch Byte

TBH Table Branch Halfword

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

154

12.6.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax
B{cond} label
BL{cond} label
BX{cond} Rm
BLX{cond} Rm
where:
B is branch (immediate).
BL is branch with link (immediate).
BX is branch indirect (register).
BLX is branch indirect with link (register).
cond is an optional condition code, see “Conditional Execution” .
label is a PC-relative expression. See “PC-relative Expressions” .
Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to O.
Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:
e The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other branch instructions
must be conditional inside an IT block, and must be unconditional outside the IT block, see “IT”.

The table below shows the ranges for the various branch instructions.

Table 12-26. Branch Ranges

Instruction Branch Range

B label -16 MB to +16 MB
Bcond label (outside IT block) -1 MB to +1 MB
Bcond label (inside IT block) -16 MB to +16 MB
BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

The .W suffix might be used to get the maximum branch range. See “Instruction Width Selection” .

Restrictions

The restrictions are:
e Do not use PC in the BLX instruction
e For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address created by
changing bit[0] to O
e When any of these instructions is inside an IT block, it must be the last instruction of the IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a longer branch
range when it is inside an IT block.

Condition Flags

Atmel SAMAE [DATASHEET] 155

11157C-ATARM-25-Jul-13

These instructions do not change the flags.

Examples

B | oopA ; Branch to | oopA

BLE ng ; Conditionally branch to | abel ng

B. W target ; Branch to target within 16MB range

BEQ t ar get ; Conditionally branch to target

BEQ W target ; Conditionally branch to target within 1MB

BL funC ; Branch with link (Call) to function funC, return address
: stored in LR

BX LR : Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored in RO.

12.6.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, label
CBNZ Rn, label

where:

Rn is the register holding the operand.
label is the branch destination.
Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of instructions.
CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label
CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0
BNE label

Restrictions

The restrictions are:
e Rn must be in the range of RO to R7
e The branch destination must be within 4 to 130 bytes after the instruction
e These instructions must not be used inside an IT block.

Condition Flags

These instructions do not change the flags.

Examples
CBz R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

Atmel SAMAE [DATASHEET] 156

11157C-ATARM-25-Jul-13

12.6.10.3 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond
where:
X specifies the condition switch for the second instruction in the IT block.
y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.
cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.
E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in the IT
block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some of
them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so that the
user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and execution of
the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to branch to an
instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e T
e CBZand CBNZ
e CPSID and CPSIE.

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or must be the last instruction
inside the IT block. These are:

e ADDPC, PC,Rm
e MOV PC,Rm
e B, BL, BX, BLX
e Any LDM, LDR, or POP instruction that writes to the PC
e TBBand TBH
e Do not branch to any instruction inside an IT block, except when returning from an exception handler
All conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or inside an IT
block but has a larger branch range if it is inside one
e Each instruction inside the IT block must specify a condition code suffix that is either the same or logical inverse as
for the other instructions in the block.

Atmel SAMAE [DATASHEET] 157

11157C-ATARM-25-Jul-13

Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of assembler directives
within them.

Condition Flags
This instruction does not change the flags.

Example
ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional move

CMP RO, #9 ; Convert RO hex value (0O to 15) into ASCII
; ('OI_'gI, IAI_IFI)

ITE GT ; Next 2 instructions are conditional

ADDGT R1, RO, #55 ; Convert OxA -> "A*"
ADDLE R1, RO, #48 ; Convert 0x0O -> "0OF

T GT ; 1T block with only one conditional instruction
ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional move

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block

Atmel SAMAE [DATASHEET] 158

11157C-ATARM-25-Jul-13

12.6.10.4 TBB and TBH
Table Branch Byte and Table Branch Halfword.

Syntax
TBB [Rn, Rm]
TBH [Rn, Rm, LSL #1]
where:
Rn is the register containing the address of the table of branch lengths.
If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.
Rm is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.
Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or halfword offsets for
TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For TBB the branch offset is twice the
unsigned value of the byte returned from the table. and for TBH the branch offset is twice the unsigned value of the
halfword returned from the table. The branch occurs to the address at that offset from the address of the byte
immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

e Rn must not be SP

e Rm must not be SP and must not be PC

e When any of these instructions is used inside an IT block, it must be the last instruction of the IT block.
Condition Flags
These instructions do not change the flags.

Examples
ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; R1 is the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3

; an instruction sequence follows
BranchTable_Byte
DCB 0
DCB ((Case2-Casel)/2)
DCB ((Case3-Casel)/2)

Casel offset calculation
Case2 offset calculation
Case3 offset calculation

TBH [PC, R1, LSL #1] R1 is the index, PC is used as base of the

; branch table

BranchTable_H
DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable_H)/2) ; CaseB offset calculation

DCI ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows

Atmel SAM4E [DATASHEET] 159

11157C-ATARM-25-Jul-13

CaseB
; an
CaseC
; an

instruction sequence follows

instruction sequence follows

12.6.11 Floating-point Instructions

The table below shows the floating-point instructions.

These instructions are only available if the FPU is included, and enabled, in the system. See “Enabling the FPU” for
information about enabling the floating-point unit.

Table 12-27. Floating-point Instructions

Mnemonic | Description

VABS Floating-point Absolute

VADD Floating-point Add

VCMP Compare two floating-point registers, or one floating-point register and zero

VCMPE Compare two floating-point registers, or one floating-point register and zero with
Invalid Operation check

VCVT Convert between floating-point and integer

VCVT Convert between floating-point and fixed point

VCVTR Convert between floating-point and integer with rounding

VCVTB Converts half-precision value to single-precision

VCVTT Converts single-precision register to half-precision

VDIV Floating-point Divide

VEMA Floating-point Fused Multiply Accumulate

VENMA Floating-point Fused Negate Multiply Accumulate

VFMS Floating-point Fused Multiply Subtract

VFNMS Floating-point Fused Negate Multiply Subtract

VLDM Load Multiple extension registers

VLDR Loads an extension register from memory

VLMA Floating-point Multiply Accumulate

VLMS Floating-point Multiply Subtract

VMOV Floating-point Move Immediate

VMOV Floating-point Move Register

VMOV Copy ARM core register to single precision

VMOV Copy 2 ARM core registers to 2 single precision

VMOV Copies between ARM core register to scalar

VMOV Copies between Scalar to ARM core register

VMRS Move to ARM core register from floating-point System Register

VMSR Move to floating-point System Register from ARM Core register

VMUL Multiply floating-point

VNEG Floating-point negate

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

160

Table 12-27. Floating-point Instructions (Continued)

Mnemonic Description

VNMLA Floating-point multiply and add

VNMLS Floating-point multiply and subtract
VNMUL Floating-point multiply

VPOP Pop extension registers

VPUSH Push extension registers

VSQRT Floating-point square root

VSTM Store Multiple extension registers
VSTR Stores an extension register to memory
VSUB Floating-point Subtract

12.6.11.1 VABS
Floating-point Absolute.

Syntax
VABS{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, Sm are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

The floating-point instruction clears the sign bit.

Examples
VABS.F32 S4, S6

12.6.11.2 VADD
Floating-point Add

Syntax
VADD{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd, is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.

Restrictions

Atmel SAMAE [DATASHEET] 161

11157C-ATARM-25-Jul-13

There are no restrictions.
Condition Flags
This instruction does not change the flags.

Examples
VADD.F32 sS4, S6, S7

Atmel SAM4E [DATASHEET] 162

11157C-ATARM-25-Jul-13

12.6.11.3 VCMP, VCMPE

Compares two floating-point registers, or one floating-point register and zero.

Syntax
VCMP{E}{cond}.F32 Sd, Sm
VCMP{E}{cond}.F32 Sd, #0.0

where:

cond is an optional condition code, see “Conditional Execution” .

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling NaN causes the exception.

Sd is the floating-point operand to compare.

Sm is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares:
e Two floating-point registers.
e One floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any type of NaN. It always raises an

Invalid Operation exception if either operand is a signaling NaN.

Condition Flags

When this instruction writes the result to the FPSCR flags, the values are normally transferred to the ARM flags by a

wn

subsequent VMRS instruction, see “” .

Examples
VCMP _F32 S4, #0.0
VCMP _F32 S4, S2

Atmel

SAMA4E [DATASHEET] 163

11157C-ATARM-25-Jul-13

12.6.11.4 VCVT, VCVTR between Floating-point and Integer
Converts a value in a register from floating-point to a 32-bit integer.

Syntax
VCVT{R}{cond}.Tm_.F32 Sd, Sm
VCVT{cond}.F32.Tm Sd, Sm

where:

R If R is specified, the operation uses the rounding mode specified by the FPSCR.
If R is omitted. the operation uses the Round towards Zero rounding mode.

cond is an optional condition code, see “Conditional Execution” .

Tm is the data type for the operand. It must be one of:

S32 signed 32- U32 unsigned 32-bit value.

bit value.

Sd, Sm are the destination register and the operand register.

Operation

These instructions:
1. Either
e Converts a value in a register from floating-point value to a 32-bit integer.
e Converts from a 32-bit integer to floating-point value.
2. Places the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding mode, but can optionally use the
rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 164

11157C-ATARM-25-Jul-13

12.6.11.5 VCVT between Floating-point and Fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:
cond is an optional condition code, see “Conditional Execution” .
Td is the data type for the fixed-point number. It must be one of:
S16 signed 16-bit value.
U1l6 unsigned 16-bit value.
S32 signed 32-bit value.
U32 unsigned 32-bit value.
Sd is the destination register and the operand register.
fbits is the number of fraction bits in the fixed-point number:
If Td is S16 or U16, fbits must be in the range 0-16.
If Td is S32 or U32, fbits must be in the range 1-32.
Operation

These instructions:
1. Either

e Converts a value in a register from floating-point to fixed-point.
e Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-order

bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-point

operation uses the Round to Nearest rounding mode.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel

SAMA4E [DATASHEET] 165

11157C-ATARM-25-Jul-13

12.6.11.6 VCVTB, VCVTT

Converts between a half-precision value and a single-precision value.

Syntax
VCVT{y}{cond}.F32.F16 Sd, Sm
VCVT{y}{cond}.F16.F32 Sd, Sm

where:

y Specifies which half of the operand register Sm or destination register Sd is used for the
operand or destination:
- If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.
- If y is T, then the top half, bits [31:16], of Sm or Sd is used.

cond is an optional condition code, see “Conditional Execution” .

Sd is the destination register.

Sm is the operand register.

Operation

This instruction with the.F16.32 suffix:
1. Converts the half-precision value in the top or bottom half of a single-precision. register to single-precision.
2. Writes the result to a single-precision register.

This instruction with the.F32.F16 suffix:
1. Converts the value in a single-precision register to half-precision.

2. Writes the result into the top or bottom half of a single-precision register, preserving the other half of the target
register.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

12.6.11.7 VDIV

Divides floating-point values.
Syntax
VDIV{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.
Sn, Sm are the operand registers.
Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 166

11157C-ATARM-25-Jul-13

12.6.11.8 VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax
VFMA{cond}.F32 {Sd,} Sn, Sm
VFMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFMA instruction:
1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:
1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.

3. Adds the products to the destination register.
4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

167

12.6.11.9 VENMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax
VFNMA{cond}.F32 {Sd,} Sn, Sm
VFNMS{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination register.

Sn, Sm are the operand registers.

Operation

The VFENMA instruction:
1. Negates the first floating-point operand register.
2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product
4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VENMS instruction:
1. Multiplies the first floating-point operand with second floating-point operand.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAM4E [DATASHEET] 168

11157C-ATARM-25-Jul-13

12.6.11.10 VLDM
Floating-point Load Multiple

Syntax

VLDM{mode}{cond}{.size} Rn{!1}, list

where:

mode

cond
size
Rn

list

Operation

is the addressing mode:

- 1A Increment After. The consecutive addresses start at the address specified
in Rn.

- DB Decrement Before. The consecutive addresses end just before the

address specified in Rn.

is an optional condition code, see “Conditional Execution” .
is an optional data size specifier.
is the base register. The SP can be used

is the command to the instruction to write a modified value back to Rn. This is
required if mode == DB, and is optional if mode == IA.

is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

This instruction loads:
e Multiple extension registers from consecutive memory locations using an address from an ARM core register as
the base address.

Restrictions

The restrictions are:

e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

e For the base address, the SP can be used.
In the ARM instruction set, if ! is not specified the PC can be used.

e [ist must contain at least one register. If it contains doubleword registers, it must not contain more than 16
registers.

e If using the Decrement Before addressing mode, the write back flag, !, must be appended to the base register
specification.

Condition Flags

These instructions do not change the flags.

Atmel

SAMA4E [DATASHEET] 169

11157C-ATARM-25-Jul-13

12.6.11.11 VLDR
Loads a single extension register from memory

Syntax
VLDR{cond}{-64} Dd, [Rn{#imm}]
VLDR{cond}{.64} Dd, label
VLDR{cond}{-64} Dd, [PC, #imm}]
VLDR{cond}{-32} Sd, [Rn {, #imm}]
VLDR{cond}{-.32} Sd, label
VLDR{cond}{-32} Sd, [PC, #imm]

where:
cond is an optional condition code, see “Conditional Execution” .
64, 32 are the optional data size specifiers.
Dd is the destination register for a doubleword load.
Sd is the destination register for a singleword load.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address.
Permitted address values are multiples of 4 in the range 0 to 1020.
label is the label of the literal data item to be loaded.
Operation

This instruction:

e |oads a single extension register from memory, using a base address from an ARM core register, with an optional
offset.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

Atmel SAM4E [DATASHEET] 170

11157C-ATARM-25-Jul-13

12.6.11.12 VLMA, VLMS

Multiplies two floating-point values, and accumulates or subtracts the results.

Syntax
VLMA{cond}.F32 Sd, Sn, Sm
VLMS{cond}.F32 Sd, Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:
1. Multiplies two floating-point values.
2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.13 VMOV Immediate

Move floating-point Immediate

Syntax
VMOV{cond}.F32 Sd, #imm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the branch destination.
imm is a floating-point constant.
Operation

This instruction copies a constant value to a floating-point register.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAM4E [DATASHEET] 171

11157C-ATARM-25-Jul-13

12.6.11.14 VMOV Register

Copies the contents of one register to another.

Syntax
VMOV{cond}.F64 Dd, Dm
VMOV{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Dd is the destination register, for a doubleword operation.
Dm is the source register, for a doubleword operation.
Sd is the destination register, for a singleword operation.
Sm is the source register, for a singleword operation.
Operation

This instruction copies the contents of one floating-point register to another.
Restrictions

There are no restrictions

Condition Flags

These instructions do not change the flags.

12.6.11.15 VMOV Scalar to ARM Core Register

Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax
VMOV{cond} Rt, Dn[x]

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register.
Dn is the 64-bit doubleword register.
X Specifies which half of the doubleword register to use:

- If x is 0, use lower half of doubleword register

- If x is 1, use upper half of doubleword register.
Operation

This instruction transfers:
e One word from the upper or lower half of a doubleword floating-point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 172

11157C-ATARM-25-Jul-13

12.6.11.16 VMOV ARM Core Register to Single Precision

Transfers a single-precision register to and from an ARM core register.

Syntax
VMOV{cond} Sn, Rt
VMOV{cond} Rt, Sn
where:
cond is an optional condition code, see “Conditional Execution” .
Sn is the single-precision floating-point register.
Rt is the ARM core register.
Operation

This instruction transfers:
e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

12.6.11.17 VMOV Two ARM Core Registers to Two Single Precision

Transfers two consecutively numbered single-precision registers to and from two ARM core registers.

Syntax

VMov{cond} Sm, Sml, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sm is the first single-precision register.
Sml is the second single-precision register.

This is the next single-precision register after Sm.

Rt is the ARM core register that Sm is transferred to or from.
Rt2 is the The ARM core register that Sm1 is transferred to or from.
Operation

This instruction transfers:
e The contents of two consecutively numbered single-precision registers to two ARM core registers.
e The contents of two ARM core registers to a pair of single-precision registers.

Restrictions
e The restrictions are:

The floating-point registers must be contiguous, one after the other.

The ARM core registers do not have to be contiguous.

Rt cannot be PC or SP.

Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 173

11157C-ATARM-25-Jul-13

12.6.11.18 VMOV ARM Core Register to Scalar

Transfers one word to a floating-point register from an ARM core register.

Syntax
VMOV{cond}{-32} Dd[x], Rt
where:
cond is an optional condition code, see “Conditional Execution” .
32 is an optional data size specifier.
Dd[x] is the destination, where [x] defines which half of the doubleword is transferred,
as follows:
If x is O, the lower half is extracted
If x is 1, the upper half is extracted.
Rt is the source ARM core register.
Operation
This instruction transfers one word to the upper or lower half of a doubleword floating-point register from an ARM core
register.
Restrictions

Rt cannot be PC or SP.
Condition Flags

These instructions do not change the flags.

12.6.11.19 VMRS
Move to ARM Core register from floating-point System Register.

Syntax
VMRS{cond} Rt, FPSCR
VMRS{cond} APSR_nzcv, FPSCR

where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the destination ARM core register. This register can be R0-R14.

APSR_nzcv Transfer floating-point flags to the APSR flags.
Operation

This instruction performs one of the following actions:
e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition Flags

These instructions optionally change the flags: N, Z, C, V

Atmel SAMAE [DATASHEET] 174

11157C-ATARM-25-Jul-13

12.6.11.20 VMSR

Move to floating-point System Register from ARM Core register.

Syntax
VMSR{cond} FPSCR, Rt
where:
cond is an optional condition code, see “Conditional Execution” .
Rt is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See “Floating-point Status Control
Register” for more information.

Restrictions

The restrictions are:
e Rtcannot be PC or SP.

Condition Flags
This instruction updates the FPSCR.

12.6.11.21 VMUL
Floating-point Multiply.

Syntax
VMUL{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point values.
Operation

This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.

Restrictions
There are no restrictions.
Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 175

11157C-ATARM-25-Jul-13

12.6.11.22 VNEG
Floating-point Negate.

Syntax
VNEG{cond}.F32 Sd, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sm is the operand floating-point value.
Operation

This instruction:
1. Negates a floating-point value.
2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.
Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.23 VNMLA, VNMLS, VNMUL
Floating-point multiply with negation followed by add or subtract.

Syntax
VNMLA{cond}.F32 Sd, Sn, Sm
VNMLS{cond}.F32 Sd, Sn, Sm
VNMUL{cond}.F32 {Sd,} Sn, Sm

where:

cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point register.

Sn, Sm are the operand floating-point registers.

Operation

The VNMLA instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the negation of the product.
3. Writes the result back to the destination register.
The VNMLS instruction:
1. Multiplies two floating-point register values.
2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.
The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.
Restrictions

There are no restrictions.

Atmel SAMAE [DATASHEET] 176

11157C-ATARM-25-Jul-13

Condition Flags

These instructions do not change the flags.

12.6.11.24 VPOP

Floating-point extension register Pop.

Syntax
VPOP{cond}{.size} list

where:

cond is an optional condition code, see “Conditional Execution” .

size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

list is the list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded by
brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.
Restrictions

The list must contain at least one register, and not more than sixteen registers.
Condition Flags

These instructions do not change the flags.

12.6.11.25 VPUSH

Floating-point extension register Push.

Syntax
VPUSH{cond}{-size} list
where:
cond is an optional condition code, see “Conditional Execution” .
size is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.
list is a list of the extension registers to be stored, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded
by brackets.
Operation

This instruction:
e Stores multiple consecutive extension registers to the stack.

Restrictions

The restrictions are:
e list must contain at least one register, and not more than sixteen.

Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 177

11157C-ATARM-25-Jul-13

12.6.11.26 VSQRT

Floating-point Square Root.

Syntax

VSQRT{cond}.F32 Sd, Sm

where:
cond
Sd

Sm

Operation

is an optional condition code, see “Conditional Execution” .
is the destination floating-point value.

is the operand floating-point value.

This instruction:

e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

12.6.11.27 VSTM

Floating-point Store Multiple.

Syntax

VSTM{mode}{cond}{.size} Rn{!1}, list

where:

mode

cond

size

Rn

list

Operation

is the addressing mode:

- 1A Increment After. The consecutive addresses start at the address specified
in Rn.

This is the default and can be omitted.

- DB Decrement Before. The consecutive addresses end just before the

address specified in Rn.

is an optional condition code, see “Conditional Execution” .

is an optional data size specifier.
If present, it must be equal to the size in bits, 32 or 64, of the registers in list.

is the base register. The SP can be used

is the function that causes the instruction to write a modified value back to Rn.
Required if mode == DB.

is a list of the extension registers to be stored, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and surrounded
by brackets.

This instruction:

e Stores multiple extension registers to consecutive memory locations using a base address from an ARM core

register.

Restrictions

The restrictions are:

Atmel

SAMA4E [DATASHEET] 178

11157C-ATARM-25-Jul-13

e [ist must contain at least one register.
If it contains doubleword registers it must not contain more than 16 registers.

e Use of the PC as Rn is deprecated.

Condition Flags

These instructions do not change the flags.

12.6.11.28 VSTR

Floating-point Store.

Syntax
VSTR{cond}{-32} Sd, [Rn{, #imm}]
VSTR{cond}{.-64} Dd, [Rn{, #imm}]
where
cond is an optional condition code, see “Conditional Execution” .
32,64 are the optional data size specifiers.
Sd is the source register for a singleword store.
Dd is the source register for a doubleword store.
Rn is the base register. The SP can be used.
imm is the + or - immediate offset used to form the address. Values are multiples of 4
in the range 0-1020. imm can be omitted, meaning an offset of +0.
Operation

This instruction:

e Stores a single extension register to memory, using an address from an ARM core register, with an optional offset,
defined in imm.

Restrictions

The restrictions are:
e The use of PC for Rn is deprecated.

Condition Flags

These instructions do not change the flags.

Atmel SAMAE [DATASHEET] 179

11157C-ATARM-25-Jul-13

12.6.11.29 VSUB
Floating-point Subtract.

Syntax
VSuB{cond}.F32 {Sd,} Sn, Sm
where:
cond is an optional condition code, see “Conditional Execution” .
Sd is the destination floating-point value.
Sn, Sm are the operand floating-point value.
Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.

Atmel SAMA4E [DATASHEET] 180

11157C-ATARM-25-Jul-13

12.6.12 Miscellaneous Instructions

The table below shows the remaining Cortex-M4 instructions:

Table 12-28. Miscellaneous Instructions

Mnemonic | Description

BKPT Breakpoint

CPSID Change Processor State, Disable Interrupts
CPSIE Change Processor State, Enable Interrupts
DMB Data Memory Barrier

DSB Data Synchronization Barrier

ISB Instruction Synchronization Barrier

MRS Move from special register to register

MSR Move from register to special register

NOP No Operation

SEV Send Event

SvC Supervisor Call

WFE Wait For Event

WEFI Wait For Interrupt

12.6.12.1 BKPT

Breakpoint.
Syntax
BKPT #imm
where:
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate system state
when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the condition
specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples
BKPT OxAB ; Breakpoint with i mmedi ate value set to OxAB (debugger can
; extract the immedi ate value by locating it using the PC)

Note: ARM does not recommend the use of the BKPT instruction with an immediate value set to OXAB for any purpose
other than Semi-hosting.

Atmel SAM4E [DATASHEET] 181

11157C-ATARM-25-Jul-13

12.6.12.2 CPS

Change Processor State.

Syntax
CPSeffect iflags
where:
effect is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags is a sequence of one or more flags:
i Set or clear PRIMASK.
f Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See “Exception Mask Registers” for more
information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software, it has no effect if used in unprivileged software
e CPS cannot be conditional and so must not be used inside an IT block.

Condition Flags
This instruction does not change the condition flags.

Examples

CPSIDi ; Disable interrupts and configurable fault handlers (set PRI MASK)
CPSIDf ; Disable interrupts and all fault handlers (set FAULTMASK)

CPSIE i ; Enable interrupts and configurable fault handlers (clear PRI MASK)

CPSIE f ; Enable interrupts and fault handl ers (cl ear FAULTMASK)

12.6.12.3 DMB
Data Memory Barrier.
Syntax
DMB{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program order, before
the DMB instruction are completed before any explicit memory accesses that appear, in program order, after the DMB
instruction. DMB does not affect the ordering or execution of instructions that do not access memory.

Condition Flags
This instruction does not change the flags.

Examples
DMB ; Data Memory Barrier

Atmel SAM4E [DATASHEET] 182

11157C-ATARM-25-Jul-13

12.6.12.4 DSB

Data Synchronization Barrier.

Syntax
DSB{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in program order, do
not execute until the DSB instruction completes. The DSB instruction completes when all explicit memory accesses
before it complete.

Condition Flags

This instruction does not change the flags.

12.6.12.51SB

Examples
DSB ; Data Synchronisation Barrier

Instruction Synchronization Barrier.
Syntax

1SB{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions following
the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

Condition Flags
This instruction does not change the flags.

Examples
ISB ; Instruction Synchronisation Barrier

Atmel SAM4E [DATASHEET] 183

11157C-ATARM-25-Jul-13

12.6.12.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax
MRS{cond} Rd, spec_reg
where:
cond is an optional condition code, see “Conditional Execution” .
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for example to clear the
Q flag.
In process swap code, the programmers model state of the process being swapped out must be saved, including

relevant PSR contents. Similarly, the state of the process being swapped in must also be restored. These operations use
MRS in the state-saving instruction sequence and MSR in the state-restoring instruction sequence.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See “MSR” .

Restrictions

Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples
MRS RO, PRIMASK ; Read PRIMASK value and write it to RO

Atmel SAMAE [DATASHEET] 184

11157C-ATARM-25-Jul-13

12.6.12.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax
MSR{cond} spec_reg, Rn
where:
cond is an optional condition code, see “Conditional Execution” .
Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP,
PRIMASK, BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only access the APSR.
See “Application Program Status Register” . Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

Note: When the user writes to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
Rn is non-zero and the current BASEPRI value is O
Rn is non-zero and less than the current BASEPRI value.

See “‘MRS”".

Restrictions

Rn must not be SP and must not be PC.

Condition Flags

This instruction updates the flags explicitly based on the value in Rn.

Examples
MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

12.6.12.8 NOP

No Operation.

Syntax
NOP{cond}

where:
cond is an optional condition code, see “Conditional Execution” .
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the pipeline
before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition Flags
This instruction does not change the flags.

Examples
NOP ; No operation

Atmel SAM4E [DATASHEET] 185

11157C-ATARM-25-Jul-13

12.6.12.9 SEV

Send Event.
Syntax
SEV{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor system. It also sets
the local event register to 1, see “Power Management” .

Condition Flags
This instruction does not change the flags.

Examples
SEV ; Send Event

12.6.12.10 SVC

Supervisor Call.

Syntax
SVC{cond} #imm
where:
cond is an optional condition code, see “Conditional Execution” .
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine what service is
being requested.

Condition Flags
This instruction does not change the flags.

Examples
SVC 0x32 Supervisor Call (SVC handler can extract the immediate value

by locating it via the stacked PC)

Atmel SAMAE [DATASHEET] 186

11157C-ATARM-25-Jul-13

12.6.12.11 WFE
Wait For Event.

Syntax
WFE{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:
e An exception, unless masked by the exception mask registers or the current priority level
e An exception enters the Pending state, if SEVONPEND in the System Control Register is set
e A Debug Entry request, if Debug is enabled

e An event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.
For more information, see “Power Management” .

Condition Flags

This instruction does not change the flags.

Examples
WFE ; Wait for event

12.6.12.12 WFI
Wait for Interrupt.
Syntax
WFI{cond}
where:
cond is an optional condition code, see “Conditional Execution” .
Operation

WFl is a hint instruction that suspends execution until one of the following events occurs:
e An exception
e A Debug Entry request, regardless of whether Debug is enabled.

Condition Flags
This instruction does not change the flags.

Examples
WFI ; Wait for interrupt

Atmel SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

187

12.7 Cortex-M4 Core Peripherals

12.7.1 Peripherals

Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low latency
interrupt processing. See Section 12.8 "Nested Vectored Interrupt Controller (NVIC)”

System Control Block (SCB)

The System Control Block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions. See Section 12.9 "System Control Block (SCB)”

System Timer (SysTick)

The System Timer, SysTick, is a 24-bit count-down timer. Use this as a Real -time Operating System (RTOS) tick
timer or as a simple counter. See Section 12.10 "System Timer (SysTick)”

Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) improves system reliability by defining the memory attributes for different
memory regions. It provides up to eight different regions, and an optional predefined background region. See
Section 12.11 "Memory Protection Unit (MPU)”

Floating-point Unit (FPU)

The Floating-point Unit (FPU) provides IEEE754-compliant operations on single-precision, 32-bit, floating-point
values. See Section 12.12 "Floating Point Unit (FPU)”

12.7.2 Address Map

The address map of the Private peripheral bus (PPB) is:

Table 12-29. Core Peripheral Register Regions

Address Core Peripheral
0xEOOOE008-0XxEOOOEOOF System Control Block
0OxEOOOE010-OxEOOOEO1F System Timer
OXEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller
OXEOOOEDO00-0XEOOOED3F System control block
OxXEOOOED90-0XxEOOOEDBS8 Memory Protection Unit
OXEOOOEF00-0XxEOOOEF03 Nested Vectored Interrupt Controller
OxEOOOEF30-0xEOOOEF44 Floating-point Unit

In register descriptions:

Atmel

The required privilege gives the privilege level required to access the register, as follows:
e Privileged: Only privileged software can access the register.
e Unprivileged: Both unprivileged and privileged software can access the register.

SAMA4E [DATASHEET] 188

11157C-ATARM-25-Jul-13

12.8

12.8.1

Nested Vectored Interrupt Controller (NVIC)

This section describes the NVIC and the registers it uses. The NVIC supports:
e 1to 48 interrupts.

e A programmable priority level of 0-15 for each interrupt. A higher level corresponds to a lower priority, so level 0 is
the highest interrupt priority.

Level detection of interrupt signals.

Dynamic reprioritization of interrupts.

Grouping of priority values into group priority and subpriority fields.
Interrupt tail-chaining.

e An external Non-maskable interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no
instruction overhead. This provides low latency exception handling.

Level-sensitive Interrupts

The processor supports level-sensitive interrupts. A level-sensitive interrupt is held asserted until the peripheral
deasserts the interrupt signal. Typically, this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request.

When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware and
Software Control of Interrupts”). For a level-sensitive interrupt, if the signal is not deasserted before the processor
returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. This means
that the peripheral can hold the interrupt signal asserted until it no longer requires servicing.

12.8.1.1 Hardware and Software Control of Interrupts

The Cortex-M4 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons:
e The NVIC detects that the interrupt signal is HIGH and the interrupt is not active
e The NVIC detects a rising edge on the interrupt signal
e A software writes to the corresponding interrupt set-pending register bit, see “Interrupt Set-pending Registers” , or
to the NVIC_STIR register to make an interrupt pending, see “Software Trigger Interrupt Register” .
A pending interrupt remains pending until one of the following:
e The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending to active. Then:

e For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt
signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the
processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive.

e Software writes to the corresponding interrupt clear-pending register bit.
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change.
Otherwise, the state of the interrupt changes to inactive.

12.8.2 NVIC Design Hints and Tips
Ensure that the software uses correctly aligned register accesses. The processor does not support unaligned accesses
to NVIC registers. See the individual register descriptions for the supported access sizes.
A interrupt can enter a pending state even if it is disabled. Disabling an interrupt only prevents the processor from taking
that interrupt.
Before programming SCB_VTOR to relocate the vector table, ensure that the vector table entries of the new vector table
are set up for fault handlers, NMI and all enabled exception like interrupts. For more information, see the “Vector Table
Offset Register” .
SAMA4E [DATASHEET)] 189
Atmel

11157C-ATARM-25-Jul-13

12.8.2.1 NVIC Programming Hints

The software uses the CPSIE | and CPSID | instructions to enable and disable the interrupts. The CMSIS provides the

following intrinsic functions for these instructions:
void __disable_irg(void) // Disable Interrupts

void __enable_irg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 12-30. CMSIS Functions for NVIC Control

CMSIS Interrupt Control Function

Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping)

Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN)

Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQn)

Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN)

Return true (IRQ-Number) if IRQn is pending

void NVIC_SetPendinglRQ (IRQn_t IRQnN)

Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn)

Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN)

Return the IRQ number of the active interrupt

void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn)

Read priority of IRQn

void NVIC_SystemReset (void)

Reset the system

The input parameter IRQn is the IRQ number. For more information about these functions, see the CMSIS

documentation.

To improve software efficiency, the CMSIS simplifies the NVIC register presentation. In the CMSIS:
e The Set-enable, Clear-enable, Set-pending, Clear-pending and Active Bit registers map to arrays of 32-bit

integers, so that:

Atmel

e The array ISER[0] corresponds to the registers ISERO
e The array ICER[0] corresponds to the registers ICERO
e The array ISPR[0] corresponds to the registers ISPRO
e The array ICPR][O]corresponds to the registers ICPRO
e The array IABR[O]corresponds to the registers IABRO
e The 4-bit fields of the Interrupt Priority Registers map to an array of 4-bit integers, so that the array IP[0] to IP[47]
corresponds to the registers IPRO-IPR12, and the array entry IP[n] holds the interrupt priority for interrupt n.

The CMSIS provides thread-safe code that gives atomic access to the Interrupt Priority Registers. Table 12-31 shows
how the interrupts, or IRQ numbers, map onto the interrupt registers and corresponding CMSIS variables that have one
bit per interrupt.

Table 12-31. Mapping of Interrupts to the Interrupt Variables

Interrupts | CMSIS Array Elements®
Set-enable | Clear-enable | Set-pending | Clear-pending | Active Bit
0-47 ISER[O] ICERJ[0] ISPR[0] ICPRI[0] IABR[O]
Note: 1. Each array element corresponds to a single NVIC register, for example the ICER[0] element corresponds to

the ICERQO register.

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

190

12.8.3 Nested Vectored Interrupt Controller (NVIC) User Interface

Table 12-32. Nested Vectored Interrupt Controller (NVIC) Register Mapping

Offset Register Name Access Reset

OxEOOOE100 Interrupt Set-enable Register 0 NVIC_ISERO Read-write 0x00000000
OxXEOOOE11C Interrupt Set-enable Register 7 NVIC_ISER7 Read-write 0x00000000
0XEOOOE180 Interrupt Clear-enable Register0 NVIC_ICERO Read-write 0x00000000
OXEOOOE19C Interrupt Clear-enable Register 7 NVIC_ICER7 Read-write 0x00000000
0XEOOOE200 Interrupt Set-pending Register 0 NVIC_ISPRO Read-write 0x00000000
OXEOOOE21C Interrupt Set-pending Register 7 NVIC_ISPR7 Read-write 0x00000000
0XEOOOE280 Interrupt Clear-pending Register O NVIC_ICPRO Read-write 0x00000000
OXEOOOE29C Interrupt Clear-pending Register 7 NVIC_ICPR7 Read-write 0x00000000
OxEOOOE300 Interrupt Active Bit Register O NVIC_IABRO Read-write 0x00000000
OXEOOOE31C Interrupt Active Bit Register 7 NVIC_IABR7 Read-write 0x00000000
OxEOOOE400 Interrupt Priority Register O NVIC_IPRO Read-write 0x00000000
O0XEOOOE42C Interrupt Priority Register 12 NVIC_IPR12 Read-write 0x00000000
OXEOOOEF00 Software Trigger Interrupt Register NVIC_STIR Write-only 0x00000000

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

191

12.8.3.1 Interrupt Set-enable Registers

Name: NVIC_ISERX [x=0..7]
Access: Read-write
Reset: 0x000000000

31 29 28 27 26 25 24
| SETENA

23 21 20 19 18 17 16
| SETENA

15 13 12 11 10 9 8
| SETENA

7 5 4 3 2 1 0
| SETENA

These registers enable interrupts and show which interrupts are enabled.

* SETENA: Interrupt Set-enable

Write:
0: No effect.

1: Enables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Notes: 1. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority.

2. Ifaninterrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, the NVIC never acti-
vates the interrupt, regardless of its priority.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

192

12.8.3.2 Interrupt Clear-enable Registers

Name: NVIC_ICERX [x=0..7]
Access: Read-write
Reset: 0x000000000

31 30 29 28 27 26 25 24
| CLRENA

23 22 21 20 19 18 17 16
| CLRENA

15 14 13 12 11 10 9 8
| CLRENA

7 6 5 4 3 2 1 0
| CLRENA

These registers disable interrupts, and show which interrupts are enabled.

* CLRENA: Interrupt Clear-enable

Write:
0: No effect.

1: Disables the interrupt.

Read:

0: Interrupt disabled.

1: Interrupt enabled.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

193

12.8.3.3 Interrupt Set-pending Registers

Name: NVIC_ISPRXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| SETPEND |
23 22 21 20 19 18 17 16

| SETPEND |
15 14 13 12 11 10 9 8

| SETPEND |
7 6 5 4 3 2 1 0

| SETPEND |

These registers force interrupts into the pending state, and show which interrupts are pending.

* SETPEND: Interrupt Set-pending
Write:
0: No effect.
1: Changes the interrupt state to pending.
Read:
0: Interrupt is not pending.
1: Interrupt is pending.
Notes: 1. Writing 1 to an ISPR bit corresponding to an interrupt that is pending has no effect.
2. Writing 1 to an ISPR bit corresponding to a disabled interrupt sets the state of that interrupt to pending.

Atmel SAMAE [DATASHEET] 194

11157C-ATARM-25-Jul-13

12.8.3.4 Interrupt Clear-pending Registers

Name: NVIC_ICPRXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| CLRPEND |
23 22 21 20 19 18 17 16

| CLRPEND |
15 14 13 12 11 10 9 8

| CLRPEND |
7 6 5 4 3 2 1 0

| CLRPEND |

These registers remove the pending state from interrupts, and show which interrupts are pending.

* CLRPEND: Interrupt Clear-pending

Write:

0: No effect.

1: Removes the pending state from an interrupt.

Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Note:

Atmel

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

SAMA4E [DATASHEET] 195

11157C-ATARM-25-Jul-13

12.8.3.5 Interrupt Active Bit Registers

Name: NVIC_IABRXx [x=0..7]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ACTIVE |
23 22 21 20 19 18 17 16

| ACTIVE |
15 14 13 12 11 10 9 8

| ACTIVE |
7 6 5 4 3 2 1 0

| ACTIVE |

These registers indicate which interrupts are active.

* ACTIVE: Interrupt Active Flags

0: Interrupt is not active.

1: Interrupt is active.

Note: A bit reads as one if the status of the corresponding interrupt is active, or active and pending.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

196

12.8.3.6 Interrupt Priority Registers

Name: NVIC_IPRx [x=0..12]

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI3 |
23 22 21 20 19 18 17 16

| PRI2 |
15 14 13 12 11 10 9 8

| PRI1 |
7 6 5 4 3 2 1 0

| PRIO |

The NVIC_IPRO-NVIC_IPR12 registers provide a 4-bit priority field for each interrupt. These registers are byte-accessible. Each
register holds four priority fields, that map up to four elements in the CMSIS interrupt priority array IP[0] to IP[47]

* PRI3: Priority (4m+3)
Priority, Byte Offset 3, refers to register bits [31:24].

* PRI2: Priority (4m+2)
Priority, Byte Offset 2, refers to register bits [23:16].

e PRI1: Priority (4m+1)
Priority, Byte Offset 1, refers to register bits [15:8].

* PRIO: Priority (4m)
Priority, Byte Offset 0, refers to register bits [7:0].

Notes: 1. Each priority field holds a priority value, 0-15. The lower the value, the greater the priority of the corresponding inter-
rupt. The processor implements only bits[7:4] of each field; bits[3:0] read as zero and ignore writes.

2. for more information about the IP[0] to IP[47] interrupt priority array, that provides the software view of the interrupt pri-
orities, see Table 12-30, “CMSIS Functions for NVIC Control” .

3. The corresponding IPR number n is given by n = m DIV 4.
4. The byte offset of the required Priority field in this register is m MOD 4.

Atmel SAMAE [DATASHEET] 197

11157C-ATARM-25-Jul-13

12.8.3.7 Software Trigger Interrupt Register

Name: NVIC_STIR

Access: Write-only

Reset: 0x000000000
31 30 29 28 27 26 25 24

I - I - I - I - I - - I = I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - - I = | NTD |
7 6 5 4 3 2 1 0

INTID

Write to this register to generate an interrupt from the software.

* INTID: Interrupt ID

Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value of 0x03 specifies interrupt IRQ3.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

198

12.9

System Control Block (SCB)

The System Control Block (SCB) provides system implementation information, and system control. This includes
configuration, control, and reporting of the system exceptions.
Ensure that the software uses aligned accesses of the correct size to access the system control block registers:
e Except for the SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it must use aligned word accesses
e Forthe SCB_CFSR and SCB_SHPR1-SCB_SHPR3 registers, it can use byte or aligned halfword or word
accesses.
The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:
1. Read and save the MMFAR or SCB_BFAR value.
2. Read the MMARVALID bit in the MMFSR subregister, or the BFARVALID bit in the BFSR subregister. The
SCB_MMFAR or SCB_BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might change the SCB_MMFAR or
SCB_BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault might
change the SCB_MMFAR or SCB_BFAR value.

Atmel SAMAE [DATASHEET] 199

11157C-ATARM-25-Jul-13

12.9.1 System Control Block (SCB) User Interface

Table 12-33. System Control Block (SCB) Register Mapping

Offset Register Name Access Reset
OxEOOOE008 Auxiliary Control Register SCB_ACTLR Read-write 0x00000000
0xEOOOEDOO CPUID Base Register SCB_CPUID Read-only 0x410FC240
OxEOOOEDO4 Interrupt Control and State Register SCB_ICSR Read-write® 0x00000000
OxEOOOEDO8 Vector Table Offset Register SCB_VTOR Read-write 0x00000000
OXEOOOEDOC Application Interrupt and Reset Control Register SCB_AIRCR Read-write 0xFA050000
OXEOOOED10 System Control Register SCB_SCR Read-write 0x00000000
OXEOOOED14 Configuration and Control Register SCB_CCR Read-write 0x00000200
OxXEOOOED18 System Handler Priority Register 1 SCB_SHPR1 Read-write 0x00000000
OxEOOOED1C System Handler Priority Register 2 SCB_SHPR2 Read-write 0x00000000
OxEOOOED20 System Handler Priority Register 3 SCB_SHPR3 Read-write 0x00000000
OXEOOOED24 System Handler Control and State Register SCB_SHCSR Read-write 0x00000000
OxEOO0ED28 Configurable Fault Status Register SCB_CFSR® Read-write 0x00000000
OXEOOOED2C HardFault Status Register SCB_HFSR Read-write 0x00000000
OxEOOOED34 MemManage Fault Address Register SCB_MMFAR Read-write Unknown
OxEOOOED38 BusFault Address Register SCB_BFAR Read-write Unknown
OxEOOOED3C Auxiliary Fault Status Register SCB_AFSR Read-write 0x00000000

Notes: 1. See the register description for more information.

2. This register contains the subregisters: “MMFSR: Memory Management Fault Status Subregister” (OXEOOOED28 - 8

bits), “BFSR: Bus Fault Status Subregister” (OXEOOOED29 - 8 bits), “UFSR: Usage Fault Status Subregister”
(OXEOOOED2A - 16 hits).

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12.9.1.1 Auxiliary Control Register

Name: SCB_ACTLR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| — | DISOOFP | DISFPCA |
7 6 5 4 3 2 1 0
| - | DISFOLD | DISDEFWBUF | DISMCYCINT |

The SCB_ACTLR register provides disable bits for the following processor functions:
« IT folding
» Write buffer use for accesses to the default memory map
* Interruption of multi-cycle instructions.

By default, this register is set to provide optimum performance from the Cortex-M4 processor, and does not normally require
modification.

» DISOOFP: Disable Out Of Order Floating Point
Disables floating point instructions that complete out of order with respect to integer instructions.

» DISFPCA: Disable FPCA
Disables an automatic update of CONTROL.FPCA.

» DISFOLD: Disable Folding
When set to 1, disables the IT folding.

Note: In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT
instruction. This behavior is called IT folding, and it improves the performance. However, IT folding can cause jitter in
looping. If a task must avoid jitter, set the DISFOLD bit to 1 before executing the task, to disable the IT folding.

 DISDEFWBUF: Disable Default Write Buffer

When set to 1, it disables the write buffer use during default memory map accesses. This causes BusFault to be precise but
decreases the performance, as any store to memory must complete before the processor can execute the next instruction.

This bit only affects write buffers implemented in the Cortex-M4 processor.

* DISMCYCINT: Disable Multiple Cycle Interruption

When set to 1, it disables the interruption of load multiple and store multiple instructions. This increases the interrupt latency of the
processor, as any LDM or STM must complete before the processor can stack the current state and enter the interrupt handler.

Atmel SAM4E [DATASHEET] 201

11157C-ATARM-25-Jul-13

12.9.1.2 CPUID Base Register

Name: SCB_CPUID
Access: Read-write
Reset: 0x000000000

31 30 29 28 27 26 25 24
| Implementer

23 22 21 20 19 18 17 16
| Variant | Constant

15 14 13 12 11 10 9 8
| PartNo

7 6 5 4 3 2 1 0
| PartNo | Revision

The SCB_CPUID register contains the processor part number, version, and implementation information.

* Implementer: Implementer Code
0x41: ARM.

* Variant: Variant Number
It is the r value in the rnpn product revision identifier:
0x0: Revision 0.

e Constant
Reads as OxF.

e PartNo: Part Number of the Processor
0xC24 = Cortex-M4.

» Revision: Revision Number

It is the p value in the rnpn product revision identifier:

0x0: Patch 0.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

202

12.9.1.3 Interrupt Control and State Register

Name: SCB_ICSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| NMIPENDSET | - PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR - |
23 22 21 20 19 18 17 16

| - | ISRPENDING VECTPENDING |
15 14 13 12 11 10 9 8

| VECTPENDING RETTOBASE - VECTACTIVE |
7 6 5 4 3 2 1 0

| VECTACTIVE |

The SCB_ICSR register provides a set-pending bit for the Non-Maskable Interrupt (NMI) exception, and set-pending and clear-
pending bits for the PendSV and SysTick exceptions.

It indicates:
» The exception number of the exception being processed, and whether there are preempted active exceptions,
* The exception number of the highest priority pending exception, and whether any interrupts are pending.

* NMIPENDSET: NMI Set-pending
Write:

PendSV set-pending bit.

Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.

As NMl is the highest-priority exception, the processor normally enters the NMI exception handler as soon as it registers a write of
1 to this bit. Entering the handler clears this bit to 0. A read of this bit by the NMI exception handler returns 1 only if the NMI signal
is reasserted while the processor is executing that handler.

* PENDSVSET: PendSV Set-pending

Write:

0: No effect.

1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to pending.

 PENDSVCLR: PendSV Clear-pending

Atmel SAMAE [DATASHEET] 203

11157C-ATARM-25-Jul-13

Write:
0: No effect.

1: Removes the pending state from the PendSV exception.

» PENDSTSET: SysTick Exception Set-pending
Write:

0: No effect.

1: Changes SysTick exception state to pending.
Read:

0: SysTick exception is not pending.

1: SysTick exception is pending.

« PENDSTCLR: SysTick Exception Clear-pending
Write:

0: No effect.

1: Removes the pending state from the SysTick exception.

This bit is Write-only. On a register read, its value is Unknown.

* ISRPENDING: Interrupt Pending Flag (Excluding NMI and Faults)
0: Interrupt not pending.
1: Interrupt pending.

 VECTPENDING: Exception Number of the Highest Priority Pending Enabled Exception
0: No pending exceptions.
Nonzero: The exception number of the highest priority pending enabled exception.

The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRI-
MASK register.

RETTOBASE: Preempted Active Exceptions Present or Not
: There are preempted active exceptions to execute.

= O

: There are no active exceptions, or the currently-executing exception is the only active exception.

VECTACTIVE: Active Exception Number Contained
0: Thread mode.

Nonzero: The exception number of the currently active exception. The value is the same as IPSR bits [8:0]. See “Interrupt Program
Status Register” .

Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Clear-Enable, Set-Enable, Clear-Pend-
ing, Set-Pending, or Priority Registers, see “Interrupt Program Status Register” .

Note: When the user writes to the SCB_ICSR register, the effect is unpredictable if:
- Writing 1 to the PENDSVSET bit and writing 1 to the PENDSVCLR bit
- Writing 1 to the PENDSTSET bit and writing 1 to the PENDSTCLR bit.

Atmel SAMAE [DATASHEET] 204

11157C-ATARM-25-Jul-13

12.9.1.4 Vector Table Offset Register

Name: SCB_VTOR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| TBLOFF |
23 22 21 20 19 18 17 16

| TBLOFF |
15 14 13 12 11 10 9 8

| TBLOFF |
7 6 5 4 3 2 1 0

| TBLOFF | - |

The SCB_VTOR register indicates the offset of the vector table base address from memory address 0x00000000.

+ TBLOFF: Vector Table Base Offset
It contains bits [29:7] of the offset of the table base from the bottom of the memory map.

Bit [29] determines whether the vector table is in the code or SRAM memory region:

0: Code.

1: SRAM.

It is sometimes called the TBLBASE bit.

Note: When setting TBLOFF, the offset must be aligned to the number of exception entries in the vector table. Configure the

next statement to give the information required for your implementation; the statement reminds the user of how to
determine the alignment requirement. The minimum alignment is 32 words, enough for up to 16 interrupts. For more
interrupts, adjust the alignment by rounding up to the next power of two. For example, if 21 interrupts are required, the
alignment must be on a 64-word boundary because the required table size is 37 words, and the next power of two

is 64.

Table alignment requirements mean that bits[6:0] of the table offset are always zero.

Atmel SAMAE [DATASHEET] 205

11157C-ATARM-25-Jul-13

12.9.1.5 Application Interrupt and Reset Control Register

Name: SCB_AIRCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| VECTKEYSTAT/VECTKEY |
23 22 21 20 19 18 17 16

| VECTKEYSTAT/VECTKEY |
15 14 13 12 11 10 9 8

| ENDIANNESS - PRIGROUP |

7 6 5 4 3 2 1 0
- ISYSRESETREQ VECT(\Z/II_ERACTI VECTRESET

The SCB_AIRCR register provides priority grouping control for the exception model, endian status for data accesses, and reset
control of the system. To write to this register, write 0x5FA to the VECTKEY field, otherwise the processor ignores the write.

 VECTKEYSTAT: Register Key
Read:
Reads as OxFAO5.

 VECTKEY: Register Key
Write:
Writes Ox5FA to VECTKEY, otherwise the write is ignored.

« ENDIANNESS: Data Endianness
O: Little-endian.

1: Big-endian.

e PRIGROUP: Interrupt Priority Grouping

This field determines the split of group priority from subpriority. It shows the position of the binary point that splits the PRI_n fields
in the Interrupt Priority Registers into separate group priority and subpriority fields. The table below shows how the PRIGROUP
value controls this split:

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point® Group Priority Bits Subpriority Bits | Group Priorities Subpriorities
0b000 PXXXXXXX.Y [7:1] None 128 2
0b001 PXXXXXX.yYy [7:2] [4:0] 64 4
0b010 bXxxxxx.yyy [7:3] [4:0] 32 8
0b011 bxxxx.yyyy [7:4] [4:0] 16 16
0b100 bxxx.yyyyy [7:5] [4:0] 8 32

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

206

Interrupt Priority Level Value, PRI_N[7:0] Number of
PRIGROUP | Binary Point® Group Priority Bits Subpriority Bits | Group Priorities Subpriorities
0b101 bxx.yyyyyy [7:6] [5:0] 4 64
0b110 bx.yyyyyyy [7] [6:0] 2 128
Obl11 b.yyyyyyy None [7:0] 1 256

Note: 1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.
Determining preemption of an exception uses only the group priority field.

« SYSRESETREQ: System Reset Request

0: No system reset request.

1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major components except for debug. This bit reads as 0.

* VECTCLRACTIVE

Reserved for Debug use. This bit reads as 0. When writing to the register, write O to this bit, otherwise the behavior is
unpredictable.

* VECTRESET

Reserved for Debug use. This bit reads as 0. When writing to the register, write O to this bit, otherwise the behavior is
unpredictable.

Atmel SAMAE [DATASHEET] 207

11157C-ATARM-25-Jul-13

12.9.1.6 System Control Register

Name: SCB_SCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - | SEVONPEND | - | SLEEPDEEP |SLEEPONEXIT -

* SEVONPEND: Send Event on Pending Bit
0: Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded.

1: Enabled events and all interrupts, including disabled interrupts, can wake up the processor.

When an event or an interrupt enters the pending state, the event signal wakes up the processor from WFE. If the processor is not

waiting for an event, the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an external event.

» SLEEPDEEP: Sleep or Deep Sleep

Controls whether the processor uses sleep or deep sleep as its low power mode:
0: Sleep.

1: Deep sleep.

* SLEEPONEXIT: Sleep-on-exit

Indicates sleep-on-exit when returning from the Handler mode to the Thread mode:
0: Do not sleep when returning to Thread mode.

1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt-driven application to avoid returning to an empty main application.

Atmel SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

208

12.9.1.7 Configuration and Control Register

Name: SCB_CCR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
| - STKALIGN BFHFNMIGN |
7 6 5 4 3 2 1 0
USERSETMPE |NONBASETHR
- DIV_0 TRP |UNALIGN_TRP - ND DENA

The SCB_CCR register controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated
by FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to the
NVIC_STIR register by unprivileged software (see “Software Trigger Interrupt Register”).

* STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:
0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the exception, it
uses this stacked bit to restore the correct stack alignment.

 BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the hard fault
and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.
1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system
devices and bridges to detect control path problems and fix them.

» DIV_O_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of O:
0: Do not trap divide by 0.

1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

* UNALIGN_TRP: Unaligned Access Trap
Enables unaligned access traps:
0: Do not trap unaligned halfword and word accesses.

1: Trap unaligned halfword and word accesses.

Atmel SAMAE [DATASHEET] 209

11157C-ATARM-25-Jul-13

If this bit is set to 1, an unaligned access generates a usage fault.
Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of whether UNALIGN_TRP is set to 1.

 USERSETMPEND

Enables unprivileged software access to the NVIC_STIR register, see “Software Trigger Interrupt Register” :
0: Disable.

1: Enable.

* NONEBASETHRDENA: Thread Mode Enable
Indicates how the processor enters Thread mode:
0: The processor can enter the Thread mode only when no exception is active.

1: The processor can enter the Thread mode from any level under the control of an EXC_RETURN value, see “Exception Return”

Atmel SAMAE [DATASHEET] 210

11157C-ATARM-25-Jul-13

12.9.1.8 System Handler Priority Registers

The SCB_SHPR1-SCB_SHPR3 registers set the priority level, 0 to 15 of the exception handlers that have configurable priority.

They are byte-accessible.

The system fault handlers and the priority field and register for each handler are:

Table 12-34. System Fault Handler Priority Fields

Handler Field Register Description
Memory management fault (MemManage) PRI_4
Bus fault (BusFault) PRI_5 “System Handler Priority Register 1”
Usage fault (UsageFault) PRI_6
SvVcall PRI_11 “System Handler Priority Register 2"
PendSVv PRI_14

“System Handler Priority Register 3"
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:4] of each field, and bits [3:0] read as zero and ignore

writes.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12.9.1.9 System Handler Priority Register 1

Name: SCB_SHPR1

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| PRI_6 |
15 14 13 12 11 10 9 8

| PRI_5 |
7 6 5 4 3 2 1 0

| PRI_4 |

* PRI_6: Priority
Priority of system handler 6, UsageFault.

* PRI_5: Priority
Priority of system handler 5, BusFault.

* PRI_4: Priority
Priority of system handler 4, MemManage.

Atmel SAMAE [DATASHEET] 212

11157C-ATARM-25-Jul-13

12.9.1.10 System Handler Priority Register 2

Name: SCB_SHPR2
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
| PRI_11 |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

* PRI_11: Priority
Priority of system handler 11, SVCall.

Atmel SAMAE [DATASHEET] 213

11157C-ATARM-25-Jul-13

12.9.1.11 System Handler Priority Register 3

Name: SCB_SHPR3

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| PRI_15 |
23 22 21 20 19 18 17 16

| PRI_14 |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

* PRI_15: Priority
Priority of system handler 15, SysTick exception.

* PRI_14: Priority
Priority of system handler 14, PendSV.

Atmel SAMAE [DATASHEET] 214

11157C-ATARM-25-Jul-13

12.9.1.12 System Handler Control and State Register

Name: SCB_SHCSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - USGFAULTENAIBUSFAULTENA MEMFAULTENA{
15 14 13 12 11 10 9 8
SVCALLPENDE|BUSFAULTPENIMMEMFAULTPENUSGFAULTPEN
D DED | DED h1 DED SYSTICKACT | PENDSVACT - MONITORACT
7 6 5 4 3 2 1 0
| SVCALLAVCT | - |USGFAULTACT| — |BUSFAULTACT|MEMFAULTACT|

The SHCSR register enables the system handlers, and indicates the pending status of the bus fault, memory management fault,
and SVC exceptions; it also indicates the active status of the system handlers.

» USGFAULTENA: Usage Fault Enable
0: Disables the exception.

1: Enables the exception.

* BUSFAULTENA: Bus Fault Enable
0: Disables the exception.

1: Enables the exception.

* MEMFAULTENA: Memory Management Fault Enable
0: Disables the exception.

1: Enables the exception.

 SVCALLPENDED: SVC Call Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* BUSFAULTPENDED: Bus Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

« MEMFAULTPENDED: Memory Management Fault Exception Pending
Read:

0: The exception is not pending.

Atmel SAMAE [DATASHEET] 215

11157C-ATARM-25-Jul-13

1: The exception is pending.
Note: The user can write to these bits to change the pending status of the exceptions.

*» USGFAULTPENDED: Usage Fault Exception Pending

Read:

0: The exception is not pending.

1: The exception is pending.

Note: The user can write to these bits to change the pending status of the exceptions.

* SYSTICKACT: SysTick Exception Active
Read:

0: The exception is not active.

1: The exception is active.

Note: The user can write to these bits to change the active status of the exceptions.
- Caution: A software that changes the value of an active bit in this register without a correct adjustment to the
stacked content can cause the processor to generate a fault exception. Ensure that the software writing to this regis-
ter retains and subsequently restores the current active status.
- Caution: After enabling the system handlers, to change the value of a bit in this register, the user must use a read-
modify-write procedure to ensure that only the required bit is changed.

» PENDSVACT: PendSV Exception Active
0: The exception is not active.

1: The exception is active.

« MONITORACT: Debug Monitor Active
0: Debug monitor is not active.

1: Debug monitor is active.

« SVCALLACT: SVC Call Active
0: SVC call is not active.

1: SVC call is active.

» USGFAULTACT: Usage Fault Exception Active
0: Usage fault exception is not active.

1: Usage fault exception is active.

» BUSFAULTACT: Bus Fault Exception Active
0: Bus fault exception is not active.

1: Bus fault exception is active.

« MEMFAULTACT: Memory Management Fault Exception Active
0: Memory management fault exception is not active.

1: Memory management fault exception is active.

If the user disables a system handler and the corresponding fault occurs, the processor treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system exceptions. An OS kernel can write to the
active bits to perform a context switch that changes the current exception type.

Atmel SAMAE [DATASHEET] 216

11157C-ATARM-25-Jul-13

12.9.1.13 Configurable Fault Status Register

Name: SCB_CFSR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - | DIVBYZERO | UNALIGNED |
23 22 21 20 19 18 17 16

| - | NOCP | INVPC | INVSTATE | UNDEFINSTR |
15 14 13 12 11 10 9 8

| BFRVALID | - | STKERR | UNSTKERR |IMPRECISERR| PRECISERR | IBUSERR |
7 6 5 4 3 2 1 0

| MMARVALID | - | MLSPERR | MSTKERR |MUNSTKERR| — | DACCVIOL | IACCVIOL |

* IACCVIOL: Instruction Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No instruction access violation fault.

1: The processor attempted an instruction fetch from a location that does not permit execution.
This fault occurs on any access to an XN region, even when the MPU is disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has not written a
fault address to the SCB_MMFAR register.

* DACCVIOL: Data Access Violation Flag

This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting instruction. The processor has loaded the
SCB_MMFAR register with the address of the attempted access.

* MUNSTKERR: Memory Manager Fault on Unstacking for a Return From Exception
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return stack is still present. The processor has
not adjusted the SP from the failing return, and has not performed a new save. The processor has not written a fault address to
the SCB_MMFAR register.

» MSTKERR: Memory Manager Fault on Stacking for Exception Entry
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack might be incorrect. The processor has not
written a fault address to SCB_MMFAR register.

Atmel SAMAE [DATASHEET] 217

11157C-ATARM-25-Jul-13

* MLSPERR: MemManage during Lazy State Preservation

This is part of “MMFSR: Memory Management Fault Status Subregister” .
0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

* MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag
This is part of “MMFSR: Memory Management Fault Status Subregister” .

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR register holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit
to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR value has
been overwritten.

* IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .
0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it attempts
to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR register.

* PRECISERR: Precise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR register.

* IMPRECISERR: Imprecise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister” .

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error.
When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR register.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault prior-
ity, the bus fault becomes pending and becomes active only when the processor returns from all higher priority processes. If a
precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both this bit and
one of the precise fault status bits are set to 1.

* UNSTKERR: Bus Fault on Unstacking for a Return From Exception
This is part of “BFSR: Bus Fault Status Subregister” .

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.

This fault is chained to the handler. This means that when the processor sets this bit to 1, the original return stack is still present.
The processor does not adjust the SP from the failing return, does not performed a new save, and does not write a fault address
to the BFAR.

Atmel SAM4E [DATASHEET] 218

11157C-ATARM-25-Jul-13

» STKERR: Bus Fault on Stacking for Exception Entry

This is part of “BFSR: Bus Fault Status Subregister” .

0: No stacking fault.

1: Stacking for an exception entry has caused one or more bus faults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the context area on the stack might be incorrect.
The processor does not write a fault address to the SCB_BFAR register.

 BFARVALID: Bus Fault Address Register (BFAR) Valid flag
This is part of “BFSR: Bus Fault Status Subregister” .

0: The value in SCB_BFAR is not a valid fault address.

1: SCB_BFAR holds a valid fault address.

The processor sets this bit to 1 after a bus fault where the address is known. Other faults can set this bit to 0, such as a memory
management fault occurring later.

If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set this bit to 0. This prevents
problems if returning to a stacked active bus fault handler whose SCB_BFAR value has been overwritten.

* UNDEFINSTR: Undefined Instruction Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No undefined instruction usage fault.

1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

» INVSTATE: Invalid State Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No invalid state usage fault.

1: The processor has attempted to execute an instruction that makes illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the
EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

» INVPC: Invalid PC Load Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . It is caused by an invalid PC load by EXC_RETURN:
0: No invalid PC load usage fault.

1: The processor has attempted an illegal load of EXC_RETURN to the PC, as a result of an invalid context, or an invalid
EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load
of the PC.

» NOCP: No Coprocessor Usage Fault
This is part of “UFSR: Usage Fault Status Subregister” . The processor does not support coprocessor instructions:
0: No usage fault caused by attempting to access a coprocessor.

1: The processor has attempted to access a coprocessor.

* UNALIGNED: Unaligned Access Usage Fault

Atmel SAMAE [DATASHEET] 219

11157C-ATARM-25-Jul-13

This is part of “UFSR: Usage Fault Status Subregister” .
0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the SCB_CCR register to 1. See “Configuration and
Control Register” . Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the setting of UNALIGN_TRP.

» DIVBYZERO: Divide by Zero Usage Fault

This is part of “UFSR: Usage Fault Status Subregister” .

0: No divide by zero fault, or divide by zero trapping not enabled.

1: The processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return points to the instruction that performed the
divide by zero. Enable trapping of divide by zero by setting the DIV_0_TRP bit in the SCB_CCR register to 1. See “Configuration
and Control Register” .

Atmel SAMAE [DATASHEET] 220

11157C-ATARM-25-Jul-13

12.9.1.14 Configurable Fault Status Register (Byte Access)

Name: SCB_CFSR (BYTE)

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| UFSR |
23 22 21 20 19 18 17 16

| UFSR |
15 14 13 12 11 10 9 8

| BFSR |
7 6 5 4 3 2 1 0

| MMFSR |

* MMFSR: Memory Management Fault Status Subregister

The flags in the MMFSR subregister indicate the cause of memory access faults. See bitfield [7..0] description in Section
12.9.1.13.

* BFSR: Bus Fault Status Subregister
The flags in the BFSR subregister indicate the cause of a bus access fault. See bitfield [14..8] description in Section 12.9.1.13.

» UFSR: Usage Fault Status Subregister
The flags in the UFSR subregister indicate the cause of a usage fault. See bitfield [31..15] description in Section 12.9.1.13.

Note: The UFSR bits are sticky. This means that as one or more fault occurs, the associated bits are set to 1. A bit that is set
to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

The SCB_CFSR register indicates the cause of a memory management fault, bus fault, or usage fault. It is byte accessible. The
user can access the SCB_CFSR register or its subregisters as follows:

» Access complete SCB_CFSR with a word access to OXEOOOED28
» Access MMFSR with a byte access to OXEOOOED28

» Access MMFSR and BFSR with a halfword access to OXEOOOED28
» Access BFSR with a byte access to 0OXEOOOED29

» Access UFSR with a halfword access to OXEOOOED2A.

Atmel SAMAE [DATASHEET] 221

11157C-ATARM-25-Jul-13

12.9.1.15 Hard Fault Status Register

Name: SCB_HFSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24

| DEBUGEVT | FORCED | - |

23 22 21 20 19 18 17 16

I - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| - | VECTTBL | — |

The HFSR register gives information about events that activate the hard fault handler. This register is read, write to clear. This
means that bits in the register read normally, but writing 1 to any bit clears that bit to 0.

» DEBUGEVT: Reserved for Debug Use
When writing to the register, write O to this bit, otherwise the behavior is unpredictable.

» FORCED: Forced Hard Fault

It indicates a forced hard fault, generated by escalation of a fault with configurable priority that cannot be handles, either because
of priority or because it is disabled:

0: No forced hard fault.
1: Forced hard fault.

When this bit is set to 1, the hard fault handler must read the other fault status registers to find the cause of the fault.

 VECTTBL: Bus Fault on a Vector Table

It indicates a bus fault on a vector table read during an exception processing:
0: No bus fault on vector table read.

1: Bus fault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the instruction that was preempted by the
exception.

Note: The HFSR bits are sticky. This means that, as one or more fault occurs, the associated bits are set to 1. A bit that is
set to 1 is cleared to O only by writing 1 to that bit, or by a reset.

Atmel SAMAE [DATASHEET] 222

11157C-ATARM-25-Jul-13

12.9.1.16 MemManage Fault Address Register

Name: SCB_MMFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The MMFAR register contains the address of the location that generated a memory management fault.

+ ADDRESS

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated the
memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write

Atmel

instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the
requested access size.

Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR register is
valid. See “MMFSR: Memory Management Fault Status Subregister” .

SAMAE [DATASHEET] 223

11157C-ATARM-25-Jul-13

12.9.1.17 Bus Fault Address Register

Name: SCB_BFAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

| ADDRESS |

The BFAR register contains the address of the location that generated a bus fault.

» ADDRESS
When the BFARVALID bit of the BFSR subregister is set to 1, this field holds the address of the location that generated the bus

fault.

Notes: 1.

Atmel

When an unaligned access faults, the address in the SCB_BFAR register is the one requested by the instruction,
even if it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the SCB_BFAR register is valid. See
“BFSR: Bus Fault Status Subregister” .

SAMA4E [DATASHEET] 224

11157C-ATARM-25-Jul-13

12.10 System Timer (SysTick)

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero, reloads (wraps to) the
value in the SYST_RVR register on the next clock edge, then counts down on subsequent clocks.

When the processor is halted for debugging, the counter does not decrement.

The SysTick counter runs on the processor clock. If this clock signal is stopped for low power mode, the SysTick counter
stops.

Ensure that the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset; the correct initialization sequence for the SysTick
counter is:

1. Program the reload value.

2. Clear the current value.

3. Program the Control and Status register.

12.10.1 System Timer (SysTick) User Interface

Table 12-35. System Timer (SYST) Register Mapping

Offset Register Name Access Reset
OxEOOOEO010 SysTick Control and Status Register SYST_CSR Read-write 0x00000004
OxEOOOEO014 SysTick Reload Value Register SYST_RVR Read-write Unknown
OxEOOOE018 SysTick Current Value Register SYST_CVR Read-write Unknown
OxXEOOOEOQ1C SysTick Calibration Value Register SYST_CALIB Read-only 0xC0000000
Atmel A e

12.10.1.1 SysTick Control and Status

Name: SYST_CSR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| - COUNTFLAG |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
| | | | CLKSOURCE TICKINT ENABLE |

The SysTick SYST_CSR register enables the SysTick features.

*» COUNTFLAG: Count Flag
Returns 1 if the timer counted to O since the last time this was read.

» CLKSOURCE: Clock Source
Indicates the clock source:
0: External Clock.

1: Processor Clock.

e TICKINT

Enables a SysTick exception request:

0: Counting down to zero does not assert the SysTick exception request.
1: Counting down to zero asserts the SysTick exception request.

The software can use COUNTFLAG to determine if SysTick has ever counted to zero.

» ENABLE

Enables the counter:
0: Counter disabled.
1: Counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then counts down. On reach-
ing 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending on the value of TICKINT. It then loads the
RELOAD value again, and begins counting.

Atmel SAMAE [DATASHEET] 226

11157C-ATARM-25-Jul-13

12.10.1.2 SysTick Reload Value Registers

Name: SYST_RVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| RELOAD |
15 14 13 12 11 10 9 8

| RELOAD |
7 6 5 4 3 2 1 0

| RELOAD |

The SYST_RVR register specifies the start value to load into the SYST_CVR register.

» RELOAD

Value to load into the SYST_CVR register when the counter is enabled and when it reaches 0.

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible, but has no effect
because the SysTick exception request and COUNTFLAG are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use: For example, to generate a multi-shot timer with a period of N processor
clock cycles, use a RELOAD value of N-1. If the SysTick interrupt is required every 100 clock pulses, set RELOAD to 99.

Atmel

SAMA4E [DATASHEET] 227

11157C-ATARM-25-Jul-13

12.10.1.3 SysTick Current Value Register

Name: SYST_CVR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| CURRENT |
15 14 13 12 11 10 9 8

| CURRENT |
7 6 5 4 3 2 1 0

| CURRENT |

The SysTick SYST_CVR register contains the current value of the SysTick counter.

* CURRENT
Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SYST_CSR.COUNTFLAG bit to 0.

SAMAE [DATASHEET] 228

11157C-ATARM-25-Jul-13

Atmel

12.10.1.4 SysTick Calibration Value Register

Name: SYST_CALIB

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| NOREF | SKEW | - |
23 22 21 20 19 18 17 16

| TENMS |
15 14 13 12 11 10 9 8

| TENMS |
7 6 5 4 3 2 1 0

| TENMS |

The SysTick SYST_CSR register indicates the SysTick calibration properties.

+ NOREF: No Reference Clock

It indicates whether the device provides a reference clock to the processor:
0: Reference clock provided.

1: No reference clock provided.

If your device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit reads-as-one and ignores writes.

« SKEW

It indicates whether the TENMS value is exact:
0: TENMS value is exact.

1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real-time clock.

« TENMS: Ten Milliseconds

The reload value for 10 ms (100 Hz) timing is subject to system clock skew errors. If the value reads as zero, the calibration value
is not known.

Atmel SAMAE [DATASHEET] 229

11157C-ATARM-25-Jul-13

12.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions, and
memory attributes of each region. It supports:

e Independent attribute settings for each region
e Overlapping regions
e Export of memory attributes to the system.
The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:
e Eight separate memory regions, 0-7
e A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For
example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is accessible from
privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the same
region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory management
fault. This causes a fault exception, and might cause the termination of the process in an OS environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be executed.
Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes™).

Table shows the possible MPU region attributes. These include Share ability and cache behavior attributes that are not
relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for guidelines for
programming such an implementation.

Memory Attributes Summary

Memory Type Shareability | Other Attributes Description
Strongly- ordered | - i All accesses to Stron_gly-ordered memory occur in program order. All
Strongly-ordered regions are assumed to be shared.
Shared - Memory-mapped peripherals that several processors share.
Device
Non-shared - Memory-mapped peripherals that only a single processor uses.
Non-cacheable Write-
Shared through Cacheable Normal memory that is shared between several processors.
Write-back Cacheable
Normal
Non-cacheable Write-
Non-shared | through Cacheable Normal memory that only a single processor uses.
Write-back Cacheable

Atmel

SAMAE [DATASHEET] 230

11157C-ATARM-25-Jul-13

12.11.1 MPU Access Permission Attributes

This section describes the MPU access permission attributes. The access permission bits (TEX, C, B, S, AP, and XN) of
the MPU_RASR control the access to the corresponding memory region. If an access is made to an area of memory
without the required permissions, then the MPU generates a permission fault.

The table below shows the encodings for the TEX, C, B, and S access permission bits.

Table 12-36. TEX, C, B, and S Encoding

TEX | C B S Memory Type Shareability | Other Attributes
Strongly-
(€} -
0 0 X ordered Shareable
1 x® | Device Shareable -
Not
00O 0 0 Normal shareable Outer and inner write-through. No
write allocate.
1 Shareable
1
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 0 Normal shareable Outer and inner noncacheable.
1 Shareable
1 x® | Reserved encoding -
b001 0 e Implementation defined i
attributes.
1 Not
1 0 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
0 x® | Device Not Nonshared Device.
0 shareable
b010 1 x| Reserved encoding -
1 x® | x® | Reserved encoding -
Not
b1B A A 0 Normal shareable Cachgd memory BB = outer policy,
B AA = inner policy.
1 Shareable
Note: 1. The MPU ignores the value of this bit.

Table 12-37 shows the cache policy for memory attribute encodings with a TEX value is in the range 4-7.

Table 12-37. Cache Policy for Memory Attribute Encoding

Encoding, AA or BB

Corresponding Cache Policy

00

Non-cacheable

01

Write back, write and read allocate

10

Write through, no write allocate

11

Write back, no write allocate

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

231

Table 12-38 shows the AP encodings that define the access permissions for privileged and unprivileged software.

Table 12-38. AP Encoding

AP[2:0] | Privileged Unprivileged | Description
Permissions Permissions
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO \é\ér:;?issg)é:?gl:il\tlileged software generate a
011 RW RW Full access
100 Unpredictable Unpredictable | Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

12.11.1.1 MPU Mismatch

When an access violates the MPU permissions, the processor generates a memory management fault, see “Exceptions
and Interrupts” . The MMFSR indicates the cause of the fault. See “MMFSR: Memory Management Fault Status
Subregister” for more information.

12.11.1.2 Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR registers. Each
register can be programed separately, or a multiple-word write can be used to program all of these registers.
MPU_RBAR and MPU_RASR aliases can be used to program up to four regions simultaneously using an STM
instruction.

12.11.1.3 Updating an MPU Region Using Separate Words

Simple code to configure one region:

; R1 = region number
; R2 size/enable

; R3 = attributes

: R4 = address

LDR RO,=MPU_RNR

STR R1, [RO, #0xO0]
STR R4, [RO, #0x4]
STRH R2, [RO, #0x8]
STRH R3, [RO, #OxA]

; OXEOOOED98, MPU region number register
; Region Number

; Region Base Address

; Region Size and Enable
; Region Attribute

Disable a region before writing new region settings to the MPU, if the region being changed was previously enabled. For
example:

Atmel

; R1 = region number
; R2 = size/enable
; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR
STR R1, [RO, #0xO0]
BIC R2, R2, #1
STRH R2, [RO, #0x8]
STR R4, [RO, #0x4]
STRH R3, [RO, #OxA]
ORR R2, #1

STRH R2, [RO, #0x8]

OXEOOOED98, MPU region number register

Region Number

Disable

Region Size and Enable
Region Base Address
Region Attribute
Enable

Region Size and Enable

SAMAE [DATASHEET]

232

11157C-ATARM-25-Jul-13

The software must use memory barrier instructions:
e Before the MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be
affected by the change in MPU settings
e After the MPU setup, if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an exception handler,
or is followed by an exception return, because the exception entry and exception return mechanisms cause memory
barrier behavior.

The software does not need any memory barrier instructions during an MPU setup, because it accesses the MPU
through the PPB, which is a Strongly-Ordered memory region.

For example, if the user wants all of the memory access behavior to take effect immediately after the programming
sequence, a DSB instruction and an ISB instruction must be used. A DSB is required after changing MPU settings, such
as at the end of a context switch. An ISB is required if the code that programs the MPU region or regions is entered using
a branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then
an ISB is not required.

12.11.1.4 Updating an MPU Region Using Multi-word Writes

The user can program directly using multi-word writes, depending on how the information is divided. Consider the
following reprogramming:

; R1 = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register

STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; R1 = region number
: R2 = address
: R3 = size, attributes in one

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STM RO, {R1-R3} ; Region Number, address, attribute, size and enable

This can be done in two words for pre-packed information. This means that the MPU_RBAR contains the required region
number and had the VALID bit set to 1. See “MPU Region Base Address Register” . Use this when the data is statically
packed, for example in a boot loader:

; R1 = address and region number in one

; R2 = size and attributes in one

LDR RO, =MPU_RBAR ; OXEOOOED9C, MPU Region Base register

STR R1, [RO, #0x0] ; Region base address and

; region number combined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:
; R1 = address and region number in one
: R2 = size and attributes in one
LDR RO,=MPU_RBAR ; OXEOOOED9C, MPU Region Base register
STM RO, {R1-R2} ; Region base address, region number and VALID bit,
; and Region Attribute, Size and Enable

SAMAE [DATASHEET] 233

/Itl Y |eL 11157C-ATARM-25-Jul-13

12.11.1.5 Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of
the MPU_RASR field to disable a subregion. See “MPU Region Attribute and Size Register” . The least significant bit of
SRD controls the first subregion, and the most significant bit controls the last subregion. Disabling a subregion means
another region overlapping the disabled range matches instead. If no other enabled region overlaps the disabled

subregion, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be set to
0x00, otherwise the MPU behavior is unpredictable.

12.11.1.6 Example of SRD Use

Two regions with the same base address overlap. Region 1 is 128 KB, and region 2 is 512 KB. To ensure the attributes
from region 1 apply to the first 128 KB region, set the SRD field for region 2 to b00000011 to disable the first two
subregions, as in Figure 12-13 below:

Figure 12-13. SRD Use

12.11.1.7 MPU Design Hints And Tips

Base address of both regions

Region 2, with
subregions

Region 1

Disabled subregion

Disabled subregion

Offset from
base address

512 KB
448 KB
384 KB
320 KB
256 KB
192 KB
128 KB
64 KB
0

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt handlers

might access.

Ensure the software uses aligned accesses of the correct size to access MPU registers:
e Except for the MPU_RASR register, it must use aligned word accesses
e Forthe MPU_RASR register, it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any
previous region settings from affecting the new MPU setup.

MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program the MPU as

follows:

Table 12-39. Memory Region Attributes for a Microcontroller

Memory Region TEX C B S Memory Type and Attributes

Flash memory b000 1 | 0 | 0 | Normal memory, non-shareable, write-through
Internal SRAM b000 1 | 0 | 1 | Normal memory, shareable, write-through

External SRAM b000 1 |1 |1 | Normal memory, shareable, write-back, write-allocate
Peripherals b000 0 | 1 | 1 | Device memory, shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior.
However, using these settings for the MPU regions can make the application code more portable. The values given are
for typical situations. In special systems, such as multiprocessor designs or designs with a separate DMA engine, the

Atmel

SAMA4E [DATASHEET] 234

11157C-ATARM-25-Jul-13

shareability attribute might be important. In these cases,
manufacturer.

12.11.2 Memory Protection Unit (MPU) User Interface

Table 12-40. Memory Protection Unit (MPU) Register Mapping

refer to the recommendations of the memory device

Offset Register Name Access Reset

OxXEOOOED90 MPU Type Register MPU_TYPE Read-only 0x00000800
OxXEOOOED94 MPU Control Register MPU_CTRL Read-write 0x00000000
OXEOOOED98 MPU Region Number Register MPU_RNR Read-write 0x00000000
OXEOOOED9C MPU Region Base Address Register MPU_RBAR Read-write 0x00000000
OXEOOOEDAO MPU Region Attribute and Size Register MPU_RASR Read-write 0x00000000
OXEOOOEDA4 g'é%?s‘;’;RBAR’ see MPU Region Base Address MPU_RBAR Al | Read-write 0x00000000
OXEO0OEDA8 gg?sct’;RASR’ see MPU Region Attribute and Size | \\b\) pasr A1 | Read-write 0x00000000
OXEOOOEDAC gg?s‘t’;RBAR’ see MPU Region Base Address MPU_RBAR_A2 | Read-write 0x00000000
OXEO0OEDBO g'é%?s‘;’;RASR’ see MPU Region Attribute and Size | \\b\) pasr A2 | Read-write 0x00000000
OXEOOOEDB4 gg?sct’;RBAR’ see MPU Region Base Address MPU_RBAR_A3 | Read-write 0x00000000
OXEOOOEDBS QZZ?S‘;;rRASR’ see MPU Region Attribute and Size | /0y pasr A3 | Read-write 0x00000000

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

12.11.2.1 MPU Type Register

Name: MPU_TYPE

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

| IREGION |
15 14 13 12 11 10 9 8

| DREGION |
7 6 5 4 3 2 1 0

| - SEPARATE |

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.

* IREGION: Instruction Region
Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described by the DREGION field.

 DREGION: Data Region
Indicates the number of supported MPU data regions:
0x08 = Eight MPU regions.

* SEPARATE: Separate Instruction
Indicates support for unified or separate instruction and date memory maps:
0: Unified.

Atmel SAMAE [DATASHEET] 236

11157C-ATARM-25-Jul-13

12.11.2.2 MPU Control Register

Name: MPU_CTRL
Access: Read-write
Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| - |PRIVDEFENA| HFENMIENA | ENABLE |

The MPU CTRL register enables the MPU, enables the default memory map background region, and enables the use of the MPU
when in the hard fault, Non-maskable Interrupt (NMI), and FAULTMASK escalated handlers.

* PRIVDEFENA: Privileged Default Memory Map Enabled
Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables the use of the default memory map. Any memory access to a location not covered by any
enabled region causes a fault.

1: If the MPU is enabled, enables the use of the default memory map as a background region for privileged software accesses.

When enabled, the background region acts as a region number -1. Any region that is defined and enabled has priority over this
default map.

If the MPU is disabled, the processor ignores this bit.

 HFNMIENA: Hard Fault and NMI Enabled

Enables the operation of MPU during hard fault, NMI, and FAULTMASK handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit.
1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.

When the MPU is disabled, if this bit is set to 1, the behavior is unpredictable.

* ENABLE
Enables the MPU:
0: MPU disabled.
1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

* For privileged accesses, the default memory map is as described in “Memory Model” . Any access by privileged
software that does not address an enabled memory region behaves as defined by the default memory map.

» Any access by unprivileged software that does not address an enabled memory region causes a memory management
fault.

Atmel SAMAE [DATASHEET] 237

11157C-ATARM-25-Jul-13

XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system to function unless the
PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are enabled, then only privileged software can
operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory attributes as if the MPU
is not implemented. The default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are acces-
sible based on regions and whether PRIVDEFENA is setto 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for an exception with priority
—1 or —2. These priorities are only possible when handling a hard fault or NMI exception, or when FAULTMASK is enabled. Set-
ting the HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

Atmel SAMAE [DATASHEET] 238

11157C-ATARM-25-Jul-13

12.11.2.3 MPU Region Number Register

Name: MPU_RNR

Access: Read-write

Reset: 0x00000800
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

| REGION |

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR registers.

 REGION
Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR registers.
The MPU supports 8 memory regions, so the permitted values of this field are 0-7.

Normally, the required region number is written to this register before accessing the MPU_RBAR or MPU_RASR. However, the
region number can be changed by writing to the MPU_RBAR with the VALID bit set to 1; see “MPU Region Base Address Regis-
ter” . This write updates the value of the REGION field.

Atmel SAMAE [DATASHEET] 239

11157C-ATARM-25-Jul-13

12.11.2.4 MPU Region Base Address Register

Name: MPU_RBAR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| ADDR |
23 22 21 20 19 18 17 16

| ADDR |
15 14 13 12 11 10 9 N

| ADDR |
N-1 6 5 4 3 2 1 0

| - | VALID | REGION |

Note: If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field.

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can update the value of the

MPU_RNR.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the MPU_RNR.

» ADDR: Region Base Address

The value of N depends on the region size. The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the
SIZE field in the MPU_RASR, defines the value of N:

N = Log2(Region size in bytes),

If the region size is configured to 4 GB, in the MPU_RASR, there is no valid ADDR field. In this case, the region occupies the
complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64 KB region must be aligned on a multiple of 64 KB, for
example, at 0x00010000 or 0x00020000.

e VALID: MPU Region Number Valid
Write:

0: MPU_RNR not changed, and the processor updates the base address for the region specified in the MPU_RNR, and ignores
the value of the REGION field.

1: The processor updates the value of the MPU_RNR to the value of the REGION field, and updates the base address for the
region specified in the REGION field.

Always reads as zero.

* REGION: MPU Region
For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the MPU_RNR.

Atmel SAMAE [DATASHEET] 240

11157C-ATARM-25-Jul-13

12.11.2.5 MPU Region Attribute and Size Register

Name: MPU_RASR

Access: Read-write

Reset: 0x00000000
31 30 29 28 27 26 25 24

| - XN - | AP |
23 22 21 20 19 18 17 16

| - TEX | S C B |
15 14 13 12 11 10 9 8

| SRD |
7 6 5 4 3 2 1 0

| - | SIZE | ENABLE |

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that
region and any subregions.

MPU_RASR is accessible using word or halfword accesses:
» The most significant halfword holds the region attributes.
* The least significant halfword holds the region size, and the region and subregion enable bits.

* XN: Instruction Access Disable
0: Instruction fetches enabled.

1: Instruction fetches disabled.

* AP: Access Permission
See Table 12-38.

» TEX, C, B: Memory Access Attributes
See Table 12-36.

* S: Shareable
See Table 12-36.

* SRD: Subregion Disable

For each bit in this field:

0: Corresponding sub-region is enabled.
1: Corresponding sub-region is disabled.
See “Subregions” for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field
as 0x00.

» SIZE: Size of the MPU Protection Region
The minimum permitted value is 3 (b00010).
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

Atmel SAMAE [DATASHEET] 241

11157C-ATARM-25-Jul-13

(Region size in bytes) = 25128+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE values,
with the corresponding region size and value of N in the MPU_RBAR.

SIZE Value | Region Size | Value of N® | Note

b00100 (4) 32B 5 Minimum permitted size
b01001 (9) | 1KB 10 -

b10011 (19) | 1 MB 20 -

b11101 (29) | 1 GB 30 -

b11111 (31) | 4GB b01100 Maximum possible size

Note: 1. Inthe MPU_RBAR, see “MPU Region Base Address Register”

« ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes” .

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

242

12.12 Floating Point Unit (FPU)
The Cortex-M4F FPU implements the FPv4-SP floating-point extension.

The FPU fully supports single-precision add, subtract, multiply, divide, multiply and accumulate, and square root
operations. It also provides conversions between fixed-point and floating-point data formats, and floating-point constant
instructions.

The FPU provides floating-point computation functionality that is compliant with the ANSI/IEEE Std 754-2008, IEEE
Standard for Binary Floating-Point Arithmetic, referred to as the IEEE 754 standard.

The FPU contains 32 single-precision extension registers, which can also be accessed as 16 doubleword registers for
load, store, and move operations.

12.12.1 Enabling the FPU

The FPU is disabled from reset. It must be enabled before any floating-point instructions can be used. Example 4-1
shows an example code sequence for enabling the FPU in both privileged and user modes. The processor must be in
privileged mode to read from and write to the CPACR.

Example of Enabling the FPU:
; CPACR is located at address OxXEOOOED88
LDR.W RO, =0xEOOOED88
; Read CPACR
LDR R1, [RO]
; Set bits 20-23 to enable CP10 and CP11 coprocessors
ORR R1, R1, #(OxF << 20)
; Write back the modified value to the CPACR
STR R1, [RO]; wait for store to complete

DSB
;reset pipeline now the FPU is enabled
I1SB
SAMA4E [DATASHEET)] 243
/ItmeL 11157C-ATARM-25-Jul-13

12.12.2 Floating Point Unit (FPU) User Interface

Table 12-41. Floating Point Unit (FPU) Register Mapping

Offset Register Name Access Reset
OxXEOOOED88 Coprocessor Access Control Register CPACR Read-write 0x00000000
OXEOOOEF34 Floating-point Context Control Register FPCCR Read-write 0xC0000000
OxEOOOEF38 Floating-point Context Address Register FPCAR Read-write —

- Floating-point Status Control Register FPSCR Read-write -
OXEOOOEQO1C Floating-point Default Status Control Register FPDSCR Read-write 0x00000000

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

244

12.12.2.1 Coprocessor Access Control Register

Name: CPACR
Access: Read-write
Reset: 0x000000000
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16
| CP11 CP10 - |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The CPACR register specifies the access privileges for coprocessors.

* CPn: Access Privileges for Coprocessor n [2n+1:2n], for n Values 10 and 11.
The possible values of each field are:

0b00 = Access denied. Any attempted access generates a NOCP UsageFault.

0b01 = Privileged access only. An unprivileged access generates a NOCP fault.

0b10 = Reserved. The result of any access is unpredictable.

Ob11 = Full access.

Atmel SAMAE [DATASHEET] 245

11157C-ATARM-25-Jul-13

12.12.2.2 Floating-point Context Control Register

Name: FPCCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ASPEN | LSPEN | - |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8

| - | MONRDY |
7 6 5 4 3 2 1 0

| - | BFRDY | MMRDY | HFRDY THREAD - USER | LSPACT |

The FPCCR register sets or returns FPU control data.

 ASPEN: Automatic Hardware State Preservation And Restoration

Enables CONTROL bit [2] setting on execution of a floating-point instruction. This results in an automatic hardware state preser-
vation and restoration, for floating-point context, on exception entry and exit.

0: Disable CONTROL bit [2] setting on execution of a floating-point instruction.
1: Enable CONTROL bit [2] setting on execution of a floating-point instruction.

» LSPEN: Automatic Lazy State Preservation
0: Disable automatic lazy state preservation for floating-point context.

1: Enable automatic lazy state preservation for floating-point context.

« MONRDY: Debug Monitor Ready
0: DebugMonitor is disabled or the priority did not permit to set MON_PEND when the floating-point stack frame was allocated.

1: DebugMonitor is enabled and the priority permitted to set MON_PEND when the floating-point stack frame was allocated.

 BFRDY: Bus Fault Ready

0: BusFault is disabled or the priority did not permit to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

1: BusFault is enabled and the priority permitted to set the BusFault handler to the pending state when the floating-point stack
frame was allocated.

* MMRDY: Memory Management Ready

0: MemManage is disabled or the priority did not permit to set the MemManage handler to the pending state when the floating-
point stack frame was allocated.

1: MemManage is enabled and the priority permitted to set the MemManage handler to the pending state when the floating-point
stack frame was allocated.

e« HFRDY: Hard Fault Ready
0: The priority did not permit to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

1: The priority permitted to set the HardFault handler to the pending state when the floating-point stack frame was allocated.

Atmel SAMAE [DATASHEET] 246

11157C-ATARM-25-Jul-13

 THREAD: Thread Mode
0: The mode was not the Thread Mode when the floating-point stack frame was allocated.
1: The mode was the Thread Mode when the floating-point stack frame was allocated.

* USER: User Privilege Level
0: The privilege level was not User when the floating-point stack frame was allocated.

1: The privilege level was User when the floating-point stack frame was allocated.

» LSPACT: Lazy State Preservation Active
0: The lazy state preservation is not active.

1: The lazy state preservation is active. The floating-point stack frame has been allocated but saving the state to it has been
deferred.

Atmel SAMAE [DATASHEET] 247

11157C-ATARM-25-Jul-13

12.12.2.3 Floating-point Context Address Register

Name: FPCAR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| ADDRESS |
23 22 21 20 19 18 17 16

| ADDRESS |
15 14 13 12 11 10 9 8

| ADDRESS |
7 6 5 4 3 2 1 0

ADDRESS

The FPCAR register holds the location of the unpopulated floating-point register space allocated on an exception stack frame.

+ ADDRESS

The location of the unpopulated floating-point register space allocated on an exception stack frame.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

248

12.12.2.4 Floating-point Status Control Register

Name: FPSCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| N | Z | C \Y - AHP DN Fz |
23 22 21 20 19 18 17 16

| RMode | - |
15 14 13 12 11 10 9 8

I - |
7 6 5 4 3 2 1 0

| IDC | - | IXC | UFC | OFC DzC 10C |

The FPSCR register provides all necessary User level control of the floating-point system.

N: Negative Condition Code Flag

Floating-point comparison operations update this flag.

Z: Zero Condition Code Flag

Floating-point comparison operations update this flag.

C: Carry Condition Code Flag

Floating-point comparison operations update this flag.

V: Overflow Condition Code Flag

Floating-point comparison operations update this flag.

AHP: Alternative Half-precision Control
. IEEE half-precision format selected.

1: Alternative half-precision format selected.

DN: Default NaN Mode Control

: NaN operands propagate through to the output of a floating-point operation.

1: Any operation involving one or more NaNs returns the Default NaN.

FZ: Flush-to-zero Mode Control

1: Flush-to-zero mode enabled.

RMode: Rounding Mode Control

The encoding of this field is:
0b00 Round to Nearest (RN) mode
0b01 Round towards Plus Infinity (RP) mode.

0b10 Round towards Minus Infinity (RM) mode.

Atmel

: Flush-to-zero mode disabled. The behavior of the floating-point system is fully compliant with the IEEE 754 standard.

SAMA4E [DATASHEET] 249

11157C-ATARM-25-Jul-13

0Ob11 Round towards Zero (RZ) mode.
The specified rounding mode is used by almost all floating-point instructions.

e IDC: Input Denormal Cumulative Exception
IDC is a cumulative exception bit for floating-point exception; see also bits [4:0].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

» IXC: Inexact Cumulative Exception
IXC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

e UFC: Underflow Cumulative Exception
UFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* OFC: Overflow Cumulative Exception
OFC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

e DZC: Division by Zero Cumulative Exception
DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

* |IOC: Invalid Operation Cumulative Exception
IOC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

Atmel SAM4E [DATASHEET] 250

11157C-ATARM-25-Jul-13

12.12.2.5 Floating-point Default Status Control Register

Name: FPDSCR

Access: Read-write

Reset: 0x000000000
31 30 29 28 27 26 25 24

| - AHP DN Fz |
23 22 21 20 19 18 17 16

| RMode - |
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

The FPDSCR register holds the default values for the floating-point status control data.

« AHP
Default value for FPSCR.AHP.

* DN
Default value for FPSCR.DN.

e FZ
Default value for FPSCR.FZ.

* RMode
Default value for FPSCR.RMode.

Atmel SAMAE [DATASHEET] 251

11157C-ATARM-25-Jul-13

12.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort

Aligned

Banked register

Base register

Big-endian (BE)

Big-endian memory

Breakpoint

Atmel

A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

A data item stored at an address that is divisible by the number of bytes that defines the data size is
said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”

Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant” , “Endianness” , “Little-endian (LE)” .

Memory in which:

a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory” .

A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

SAMA4E [DATASHEET] 252

11157C-ATARM-25-Jul-13

Byte-invariant

Cache

Condition field

Conditional execution

Context

Coprocessor

Debugger

Direct Memory Access
(DMA)

Doubleword

Doubleword-aligned

Endianness

Atmel

In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.

An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

A block of on-chip or off-chip fast access memory locations, situated between the processor and main
memory, used for storing and retrieving copies of often used instructions, data, or instructions and
data. This is done to greatly increase the average speed of memory accesses and so improve
processor performance.

A four-bit field in an instruction that specifies a condition under which the instruction can execute.

If the condition code flags indicate that the corresponding condition is true when the instruction starts
executing, it executes normally. Otherwise, the instruction does nothing.

The environment that each process operates in for a multitasking operating system. In ARM
processors, this is limited to mean the physical address range that it can access in memory and the
associated memory access permissions.

A processor that supplements the main processor. Cortex-M4 does not support any coprocessors.

A debugging system that includes a program, used to detect, locate, and correct software faults,
together with custom hardware that supports software debugging.

An operation that accesses main memory directly, without the processor performing any accesses to
the data concerned.

A 64-bit data item. The contents are taken as being an unsigned integer unless otherwise stated.

A data item having a memory address that is divisible by eight.

Byte ordering. The scheme that determines the order that successive bytes of a data word are stored
in memory. An aspect of the system’s memory mapping.

See also “Little-endian (LE)” and “Big-endian (BE)”

SAMA4E [DATASHEET] 253

11157C-ATARM-25-Jul-13

Exception

Exception service routine

Exception vector

Flat address mapping

Halfword
lllegal instruction

Implementation-defined

Implementation-specific

Index register

Instruction cycle count
Interrupt handler

Interrupt vector

Atmel

An event that interrupts program execution. When an exception occurs, the processor suspends the
normal program flow and starts execution at the address indicated by the corresponding exception
vector. The indicated address contains the first instruction of the handler for the exception.

An exception can be an interrupt request, a fault, or a software-generated system exception. Faults
include attempting an invalid memory access, attempting to execute an instruction in an invalid
processor state, and attempting to execute an undefined instruction.

See “Interrupt handler” .

See “Interrupt vector” .

A system of organizing memory in which each physical address in the memory space is the same as
the corresponding virtual address.

A 16-bit data item.

An instruction that is architecturally Undefined.

The behavior is not architecturally defined, but is defined and documented by individual
implementations.

The behavior is not architecturally defined, and does not have to be documented by individual
implementations. Used when there are a number of implementation options available and the option
chosen does not affect software compatibility.

In some load and store instruction descriptions, the value of this register is used as an offset to be
added to or subtracted from the base register value to form the address that is sent to memory. Some
addressing modes optionally enable the index register value to be shifted prior to the addition or
subtraction.

See also “Base register” .

The number of cycles that an instruction occupies the Execute stage of the pipeline.

A program that control of the processor is passed to when an interrupt occurs.

One of a number of fixed addresses in low memory, or in high memory if high vectors are configured,
that contains the first instruction of the corresponding interrupt handler.

SAMA4E [DATASHEET] 254

11157C-ATARM-25-Jul-13

Little-endian (LE)

Little-endian memory

Load/store architecture

Memory Protection Unit
(MPU)

Prefetching

Preserved

Read

Region

Reserved

Thread-safe

Thumb instruction

Atmel

Byte ordering scheme in which bytes of increasing significance in a data word are stored at increasing
addresses in memory.

See also “Big-endian (BE)”, “Byte-invariant” , “Endianness” .

Memory in which:

a byte or halfword at a word-aligned address is the least significant byte or halfword within the word at
that address,

a byte at a halfword-aligned address is the least significant byte within the halfword at that address.

See also “Big-endian memory” .

A processor architecture where data-processing operations only operate on register contents, not
directly on memory contents.

Hardware that controls access permissions to blocks of memory. An MPU does not perform any
address translation.

In pipelined processors, the process of fetching instructions from memory to fill up the pipeline before
the preceding instructions have finished executing. Prefetching an instruction does not mean that the
instruction has to be executed.

Preserved by writing the same value back that has been previously read from the same field on the
same processor.

Reads are defined as memory operations that have the semantics of a load. Reads include the Thumb
instructions LDM, LDR, LDRSH, LDRH, LDRSB, LDRB, and POP.

A partition of memory space.

A field in a control register or instruction format is reserved if the field is to be defined by the
implementation, or produces Unpredictable results if the contents of the field are not zero. These fields
are reserved for use in future extensions of the architecture or are implementation-specific. All
reserved bits not used by the implementation must be written as 0 and read as 0.

In a multi-tasking environment, thread-safe functions use safeguard mechanisms when accessing
shared resources, to ensure correct operation without the risk of shared access conflicts.

One or two halfwords that specify an operation for a processor to perform. Thumb instructions must be
halfword-aligned.

SAMA4E [DATASHEET] 255

11157C-ATARM-25-Jul-13

Unaligned

Undefined

Unpredictable

Warm reset

WA

WB

Word

Write

Write-allocate (WA)

Write-back (WB)

Write buffer

Write-through (WT)

Atmel

A data item stored at an address that is not divisible by the number of bytes that defines the data size
is said to be unaligned. For example, a word stored at an address that is not divisible by four.

Indicates an instruction that generates an Undefined instruction exception.

One cannot rely on the behavior. Unpredictable behavior must not represent security holes.
Unpredictable behavior must not halt or hang the processor, or any parts of the system.

Also known as a core reset. Initializes the majority of the processor excluding the debug controller and
debug logic. This type of reset is useful if debugging features of a processor.

See “Write-allocate (WA)” .

See “Write-back (WB)" .

A 32-bit data item.

Writes are defined as operations that have the semantics of a store. Writes include the Thumb
instructions STM, STR, STRH, STRB, and PUSH.

In a write-allocate cache, a cache miss on storing data causes a cache line to be allocated into the
cache.

In a write-back cache, data is only written to main memory when it is forced out of the cache on line
replacement following a cache miss. Otherwise, writes by the processor only update the cache. This is
also known as copyback.

A block of high-speed memory, arranged as a FIFO buffer, between the data cache and main memory,
whose purpose is to optimize stores to main memory.

In a write-through cache, data is written to main memory at the same time as the cache is updated.

SAMA4E [DATASHEET] 256

11157C-ATARM-25-Jul-13

13. Debug and Test Features

13.1 Description
The SAM4 Series Microcontrollers feature a number of complementary debug and test capabilities. The Serial
Wire/JTAG Debug Port (SWJ-DP) combining a Serial Wire Debug Port (SW-DP) and JTAG Debug (JTAG-DP) port
is used for standard debugging functions, such as downloading code and single-stepping through programs. It also
embeds a serial wire trace.

13.2 Embedded Characteristics

e Debug access to all memory and registers in the system, including Cortex-M4 register bank when the core is
running, halted, or held in reset.

Serial Wire Debug Port (SW-DP) and Serial Wire JTAG Debug Port (SWJ-DP) debug access

Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches

Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
Instrumentation Trace Macrocell (ITM) for support of printf style debugging

IEEE1149.1 JTAG Boundary-can on All Digital Pins

Atmel SAMAE [DATASHEET] 257

11157C-ATARM-25-Jul-13

13.3 Debug and Test Block Diagram

Figure 13-1. Debug and Test Block Diagram

Boundary
TAP

SWJ-DP

Atmel

T™MS

TCK/SWCLK

TDI

JTAGSEL

TDO/TRACESWO

Reset
and
Test

POR

TST

SAMA4E [DATASHEET] 258

11157C-ATARM-25-Jul-13

13.4 Application Examples

13.4.1 Debug Environment

Figure 13-2 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging
functions, such as downloading code and single-stepping through the program and viewing core and peripheral registers.

Figure 13-2. Application Debug Environment Example

/
Host Debugger
PC

SWJ-DP
Emulator/Probe

SWJ-DP
Connector

SAM4

SAM4-based Application Board

13.4.2 Test Environment

Figure 13-3 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by the

tester. In this example, the “board in test” is designed using a number of JTAG-compliant devices. These devices can be
connected to form a single scan chain.

Atmel SAMAE [DATASHEET] 259

11157C-ATARM-25-Jul-13

Figure 13-3. Application Test Environment Example

Test Adaptor
Tester
JTAG
Probe
JTAG) .
Connector || Chip nf == Chip 2
I
SAM4-based Application Board In Test
13.5 Debug and Test Pin Description
Table 13-1. Debug and Test Signal List
Signal Name Function Type Active Level
Reset/Test
NRST Microcontroller Reset Input/Output Low
TST Test Select Input
SWD/JTAG
TCK/SWCLK Test Clock/Serial Wire Clock Input
TDI Test Data In Input
Test Data Out/Trace
TDO/TRACESWO Asynchronous Data Out Output
TMS/SWDIO Test Mode Select/Serial Wire Input
Input/Output
JTAGSEL JTAG Selection Input High

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

260

13.6 Functional Description

13.6.1 Test Pin

The TST pin is used for JTAG Boundary Scan Manufacturing Test or Fast Flash programming mode of the SAM4E
series. The TST pin integrates a permanent pull-down resistor of about 15 kQ to GND, so that it can be left uncon-
nected for normal operations. To enter fast programming mode, see the Fast Flash Programming Interface (FFPI)
section. For more on the manufacturing and test mode, refer to the “Debug and Test” section of the product
datasheet.

13.6.2 NRST Pin

The NRST pin is bidirectional. It is handled by the on-chip reset controller and can be driven low to provide a reset signal
to the external components or asserted low externally to reset the microcontroller. It will reset the Core and the
peripherals except the Backup region (RTC, RTT and Supply Controller). There is no constraint on the length of the reset
pulse and the reset controller can guarantee a minimum pulse length. The NRST pin integrates a permanent pull-up
resistor to VDDIO of about 100 kQ. By default, the NRST pin is configured as an input.

13.6.3 ERASE Pin

The ERASE pin is used to reinitialize the Flash content (and some of its NVM bits) to an erased state (all bits read as
logic level 1). It integrates a pull-down resistor of about 100 kQ to GND, so that it can be left unconnected for normal
operations.

This pin is debounced by SCLK to improve the glitch tolerance. When the ERASE pin is tied high during less than 100
ms, it is not taken into account. The pin must be tied high during more than 220 ms to perform a Flash erase operation.

The ERASE pin is a system I/O pin and can be used as a standard I/O. At startup, the ERASE pin is not configured as a
P10 pin. If the ERASE pin is used as a standard I/O, start-up level of this pin must be low to prevent unwanted erasing.
Also, if the ERASE pin is used as a standard I/O output, asserting the pin to low does not erase the Flash. For details,
please refer to the “Peripheral Signal Multiplexing on 1/O Lines” section of this datasheet.

13.6.4 Debug Architecture

Figure 13-4 shows the Debug Architecture used in the SAM4. The Cortex-M4 embeds four functional units for debug:
e SWJ-DP (Serial Wire/JTAG Debug Port)
e FPB (Flash Patch Breakpoint)
e DWT (Data Watchpoint and Trace)
e ITM (Instrumentation Trace Macrocell)
e TPIU (Trace Port Interface Unit)
The debug architecture information that follows is mainly dedicated to developers of SWJ-DP Emulators/Probes and

debugging tool vendors for Cortex-M4 based microcontrollers. For further details on SWJ-DP see the Cortex-M4
technical reference manual.

Atmel SAM4E [DATASHEET] 261

11157C-ATARM-25-Jul-13

Figure 13-4. Debug Architecture

DWT

4 watchpoints

FPB
PC sampler SWJ-DP

6 breakpoints

data address sampler
SWD/JTAG
data sampler ™
software trace SWO trace
32 channels
interrupt trace TPIU

time stamping

CPU statistics

13.6.5 Serial Wire JTAG Debug Port (SWJ-DP) Pins

The SWJ-DP pins are TCK/SWCLK, TMS/SWDIO, TDO/SWO, TDI and commonly provided on a standard 20-pin JTAG
connector defined by ARM. For more details about voltage reference and reset state, please refer to the “Signal
Description” section of this datasheet.

At start-up, SWJ-DP pins are configured in SWJ-DP mode to allow connection with debugging probe. Please refer to the
“Debug and Test” section of the product datasheet.

SWJ-DP pins can be used as standard I/Os to provide users more general input/output pins when the debug port is not
needed in the end application. Mode selection between SWJ-DP mode (System IO mode) and general IO mode is
performed through the AHB Matrix Special Function Registers (MATRIX_SFR). Configuration of the pad for pull-up,
triggers, debouncing and glitch filters is possible regardless of the mode.

The JTAGSEL pin is used to select the JTAG boundary scan when asserted at a high level. It integrates a permanent
pull-down resistor of about 15 kQ to GND, so that it can be left unconnected for normal operations.

By default, the JTAG Debug Port is active. If the debugger host wants to switch to the Serial Wire Debug Port, it must
provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables the JTAG-DP and enables the
SW-DP. When the Serial Wire Debug Port is active, TDO/TRACESWO can be used for trace.

The asynchronous TRACE output (TRACESWO) is multiplexed with TDO. So the asynchronous trace can only be used
with SW-DP, not JTAG-DP. For more information about SW-DP and JTAG-DP switching, please refer to the “Debug and
Test” section of the datasheet.

Table 13-2. SWJ-DP Pin List

Pin Name JTAG Port Serial Wire Debug Port
TMS/SWDIO T™MS SWDIO
TCK/SWCLK TCK SWCLK

TDI TDI -
TDO/TRACESWO TDO TRACESWO (optional: trace)

SW-DP or JTAG-DP mode is selected when JTAGSEL is low. It is not possible to switch directly between SWJ-DP and
JTAG boundary scan operations. A chip reset must be performed after JTAGSEL is changed.

Atmel SAMAE [DATASHEET] 262

11157C-ATARM-25-Jul-13

13.6.5.1 SW-DP and JTAG-DP Selection Mechanism
Debug port selection mechanism is done by sending specific SWDIOTMS sequence. The JTAG-DP is selected by
default after reset.
e Switch from JTAG-DP to SW-DP. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS =1
e Send the 16-bit sequence on SWDIOTMS =0111100111100111 (0x79E7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Switch from SWD to JTAG. The sequence is:
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1
e Send the 16-bit sequence on SWDIOTMS = 0011110011100111 (OX3CE7 MSB first)
e Send more than 50 SWCLKTCK cycles with SWDIOTMS = 1

13.6.6 FPB (Flash Patch Breakpoint)

The FPB:
e Implements hardware breakpoints
e Patches code and data from code space to system space.

The FPB unit contains:

e Two literal comparators for matching against literal loads from Code space, and remapping to a corresponding
area in System space.

e Six instruction comparators for matching against instruction fetches from Code space and remapping to a
corresponding area in System space.

e Alternatively, comparators can also be configured to generate a Breakpoint instruction to the processor core on a
match.

13.6.7 DWT (Data Watchpoint and Trace)

The DWT contains four comparators which can be configured to generate the following:
e PC sampling packets at set intervals
e PC or Data watchpoint packets
e Watchpoint event to halt core
The DWT contains counters for the items that follow:
e Clock cycle (CYCCNT)
Folded instructions
Load Store Unit (LSU) operations
Sleep Cycles
CPI (all instruction cycles except for the first cycle)
Interrupt overhead

13.6.8 ITM (Instrumentation Trace Macrocell)

The ITM is an application driven trace source that supports printf style debugging to trace Operating System (OS) and
application events, and emits diagnostic system information. The ITM emits trace information as packets which can be
generated by three different sources with several priority levels:
e Software trace: Software can write directly to ITM stimulus registers. This can be done thanks to the “printf’
function. For more information, refer to Section 13.6.8.1 “How to Configure the ITM".
Hardware trace: The ITM emits packets generated by the DWT.
Time stamping: Timestamps are emitted relative to packets. The ITM contains a 21-bit counter to generate the
timestamp.

Atmel SAMAE [DATASHEET] 263

11157C-ATARM-25-Jul-13

13.6.8.1 How to Configure the ITM

The following example describes how to output trace data in asynchronous trace mode.
e Configure the TPIU for asynchronous trace mode (refer to Section 13.6.8.3 “5.4.3. How to Configure the TPIU")

e Enable the write accesses into the ITM registers by writing “OXC5ACCES5” into the Lock Access Register
(Address: 0XEOOOOFBO)

e Write 0x00010015 into the Trace Control Register:
e Enable ITM
e Enable Synchronization packets
e Enable SWO behavior
e Fixthe ATBIDto 1
e Write Ox1 into the Trace Enable Register:
e Enable the Stimulus port 0
e Write Ox1 into the Trace Privilege Register:

e Stimulus port 0 only accessed in privileged mode (Clearing a bit in this register will result in the
corresponding stimulus port being accessible in user mode.)

e Write into the Stimulus port O register: TPIU (Trace Port Interface Unit)
The TPIU acts as a bridge between the on-chip trace data and the Instruction Trace Macrocell (ITM).

The TPIU formats and transmits trace data off-chip at frequencies asynchronous to the core.

13.6.8.2 Asynchronous Mode

The TPIU is configured in asynchronous mode, trace data are output using the single TRACESWO pin. The
TRACESWO signal is multiplexed with the TDO signal of the JTAG Debug Port. As a consequence, asynchronous trace
mode is only available when the Serial Wire Debug mode is selected since TDO signal is used in JTAG debug mode.
Two encoding formats are available for the single pin output:

e Manchester encoded stream. This is the reset value.

° NRZ_based UART byte structure

13.6.8.3 5.4.3. How to Configure the TPIU

This example only concerns the asynchronous trace mode.

e Setthe TRCENA bit to 1 into the Debug Exception and Monitor Register (OXEOOOEDFC) to enable the use of trace
and debug blocks.

e Write Ox2 into the Selected Pin Protocol Register
e Select the Serial Wire Output — NRZ
Write 0x100 into the Formatter and Flush Control Register

Set the suitable clock prescaler value into the Async Clock Prescaler Register to scale the baud rate of the
asynchronous output (this can be done automatically by the debugging tool).

13.6.9 IEEE® 1149.1 JTAG Boundary Scan

IEEE 1149.1 JTAG Boundary Scan allows pin-level access independent of the device packaging technology.

IEEE 1149.1 JTAG Boundary Scan is enabled when TST is tied to low, while JTAGSEL is high during power-up, and
must be kept in this state during the whole boundary scan operation. The SAMPLE, EXTEST and BYPASS functions are
implemented. In SWD/JTAG debug mode, the ARM processor responds with a non-JTAG chip ID that identifies the
processor. This is not IEEE 1149.1 JTAG-compliant.

It is not possible to switch directly between JTAG Boundary Scan and SWJ Debug Port operations. A chip reset must be
performed after JTAGSEL is changed.

A Boundary-scan Descriptor Language (BSDL) file to set up the test is provided on the Atmel website at
http://www.atmel.com.

Atmel SAMAE [DATASHEET] 264

11157C-ATARM-25-Jul-13

13.6.9.1 JTAG Boundary-scan Register

The Boundary-scan Register (BSR) contains a number of bits which correspond to active pins and associated control
signals.

Each SAM4 input/output pin corresponds to a 3-bit register in the BSR. The OUTPUT bit contains data that can be

forced on the pad. The INPUT bit facilitates the observability of data applied to the pad. The CONTROL bit selects the
direction of the pad.

For more information, please refer to BDSL files available for the SAM4 Series.

Atmel SAMAE [DATASHEET] 265

11157C-ATARM-25-Jul-13

13.6.10 ID Code Register

Access: Read-only

31 30 29 28 27 26 25 24
| VERSION PART NUMBER |
23 22 21 20 19 18 17 16

| PART NUMBER |

15 14 13 12 11 10 9 8

| PART NUMBER MANUFACTURER IDENTITY |
7 6 5 4 3 2 1 0

| MANUFACTURER IDENTITY 1 |

e VERSION[31:28]: Product Version Number
Set to 0x0.

« PART NUMBER][27:12]: Product Part Number

Chip Name Chip ID
SAM4E 0xA3CC_0CEO

* MANUFACTURER IDENTITY[11:1]
Set to Ox01F.

« Bit[0] Required by IEEE Std. 1149.1.

Set to Ox1.
Chip Name JTAG ID Code
SAM4E 0x05B3_703F

Atmel SAMAE [DATASHEET] 266

11157C-ATARM-25-Jul-13

14.

14.1

14.2

Chip Identifier (CHIPID)

Description

Chip Identifier (CHIPID) registers permit recognition of the device and its revision. These registers provide the sizes and
types of the on-chip memories, as well as the set of embedded peripherals.

Two chip identifier registers are embedded: CHIPID_CIDR (Chip ID Register) and CHIPID_EXID (Extension ID). Both
registers contain a hard-wired value that is read-only. The first register contains the following fields:
e EXT - shows the use of the extension identifier register
NVPTYP and NVPSIZ - identifies the type of embedded non-volatile memory and its size
ARCH - identifies the set of embedded peripherals
SRAMSIZ - indicates the size of the embedded SRAM
EPROC - indicates the embedded ARM processor
e VERSION - gives the revision of the silicon

The second register is device-dependent and reads O if the bit EXT is O.

Embedded Characteristics
e Chip ID Registers

e Identification of the Device Revision, Sizes of the Embedded Memories, Set of Peripherals, Embedded
Processor

Table 14-1. SAMAE Chip IDs Registers

Chip Name CHIPID_CIDR CHIPID_EXID
SAM4E16E 0xA3CC_O0OCEO 0x0012_0200
SAM4ESE 0xA3CC_O0OCEO 0x0012_0208
SAM4E16C 0xA3CC_O0CEO 0x0012_0201
SAM4ESC O0xA3CC_O0CEO 0x0012_0209

Atmel SAMAE [DATASHEET] 267

11157C-ATARM-25-Jul-13

14.3 Power Management Controller (PMC) User Interface

Table 14-2. Register Mapping

Offset Register Name Access Reset
0x0 Chip ID Register CHIPID_CIDR Read-only -
Ox4 Chip ID Extension Register CHIPID_EXID Read-only -

Atmel SAMAE [DATASHEET] 268

11157C-ATARM-25-Jul-13

14.3.1 Chip ID Register

Name: CHIPID_CIDR
Address: 0x400E0740
Access: Read-only
31 30 29 28 27 26 25 24
| EXT | NVPTYP | ARCH |
23 22 21 20 19 18 17 16
| ARCH | SRAMSIZ |
15 14 13 12 11 10 9 8
| NVPSIZ2 | NVPSIZ |
7 6 5 4 3 2 1 0
| EPROC VERSION |
* VERSION: Version of the Device
Current version of the device.
* EPROC: Embedded Processor
Value Name Description
1 ARM946ES ARM946ES
2 ARM7TDMI ARM7TDMI
3 CM3 Cortex-M3
4 ARM920T ARM920T
5 ARM926EJS ARM926EJS
6 CA5 Cortex-A5
7 CM4 Cortex-M4
* NVPSIZ: Nonvolatile Program Memory Size
Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 - Reserved
7 128K 128 Kbytes
8 - Reserved
9 256K 256 Kbytes
10 512K 512 Kbytes
11 - Reserved
12 1024K 1024 Kbytes

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

269

Value Name Description
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

* NVPSIZ2: Second Nonvolatile Program Memory Size

Value Name Description
0 NONE None
1 8K 8 Kbytes
2 16K 16 Kbytes
3 32K 32 Kbytes
4 - Reserved
5 64K 64 Kbytes
6 - Reserved
7 128K 128 Kbytes
8 - Reserved
9 256K 256 Kbytes
10 512K 512 Kbytes
11 - Reserved
12 1024K 1024 Kbytes
13 - Reserved
14 2048K 2048 Kbytes
15 - Reserved

* SRAMSIZ: Internal SRAM Size

Value Name Description
0 48K 48 Kbytes
1 192K 192 Khytes
2 2K 2 Kbytes
3 6K 6 Kbytes
4 24K 24 Kbytes
5 4K 4 Kbytes
6 80K 80 Kbytes
7 160K 160 Kbytes
8 8K 8 Kbytes
9 16K 16 Kbytes
10 32K 32 Kbytes
11 64K 64 Kbytes
12 128K 128 Kbytes

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

270

Value Name Description

13 256K 256 Kbytes

14 96K 96 Kbytes

15 512K 512 Kbytes

* ARCH: Architecture Identifier

Value Name Description
0x19 AT91SAMIxx AT91SAM9Ixx Series
0x29 AT91SAMIXEXX AT91SAMIXExx Series
0x34 AT91x34 AT91x34 Series
0x37 CAP7 CAP7 Series
0x39 CAP9 CAP9 Series
0x3B CAP11 CAP11 Series
0x3C SAM4E SAMAE Series
0x40 AT91x40 AT91x40 Series
0x42 AT91x42 AT91x42 Series
0x45 AT91SAM4SH2 AT91SAM4SH?2 Series
0x55 AT91x55 AT91x55 Series
0x60 AT91SAM7AXX AT91SAM7AXxx Series
0x61 AT91SAM7AQXX AT91SAM7AQxx Series
0x63 AT91x63 AT91x63 Series
0x64 SAM4CxxC SAMA4CXC Series (100-pin version)
0x70 AT91SAM7SxxX AT91SAM7Sxx Series
0x71 AT91SAM7XCxx AT91SAM7XCxx Series
0x72 AT91SAM7SEXxxX AT91SAM7SExx Series
0x73 AT91SAM7LxXX AT91SAM7Lxx Series
0x75 ATI9LSAM7XXxX AT91SAMT7Xxx Series
0x76 AT91SAM7SLxXX AT91SAM7SLxx Series
0x80 SAM3UxC SAM3UXC Series (100-pin version)
0x81 SAM3UXE SAMB3UXE Series (144-pin version)
0x83 SAM3AxXC SAM3AXC Series (100-pin version)
0x84 SAM3XxC SAM3XxXC Series (100-pin version)
0x85 SAM3XXE SAM3XXE Series (144-pin version)
0x86 SAM3XXG SAM3XXG Series (208/217-pin version)
0x92 AT91x92 AT91x92 Series
0x99 SAM3SDxB SAM3SDxB Series (64-pin version)
O0x9A SAM3SDxC SAM3SDxC Series (100-pin version)
OxA5 SAM5A SAM5A
0xB0O SAMA4LXA SAMA4LXA Series (48-pin version)

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

271

Value Name Description

0xB1 SAM4LxB SAMA4LXB Series (64-pin version)
0xB2 SAM4LxC SAMALXC Series (100-pin version)
O0xFO AT75Cxx AT75Cxx Series

* NVPTYP: Nonvolatile Program Memory Type

Value Name Description
0 ROM ROM
1 ROMLESS ROMIless or on-chip Flash
4 SRAM SRAM emulating ROM
2 FLASH Embedded Flash Memory
ROM and Embedded Flash Memory
3 ROM_FLASH ¢ NVPSIZ is ROM size

* NVPSIZ2 is Flash size

» EXT: Extension Flag
0 = Chip ID has a single register definition without extension
1 = An extended Chip ID exists.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

272

14.3.2 Chip ID Extension Register

Name: CHIPID_EXID
Address: 0x400E0744
Access: Read-only
31 30 29 28 27 26 25 24
| EXID |
23 22 21 20 19 18 17 16
| EXID |
15 14 13 12 11 10 9 8
| EXID |
7 6 5 4 3 2 1 0
| EXID |
» EXID: Chip ID Extension
Reads 0 if the EXT bit in CHIPID_CIDR is 0.
CHIPID_EXID [1:0]: Package Type
Value Name Description
0 Package Type Package 144
1 Package Type Package 100

CHIPID_EXID [4:2]: Flash Size

Value Name Description
0 Flash Size 1024 Kbytes
2 Flash Size 512 Kbytes
CHIPID_EXID [31:5]: Product Number
Value Name Description
0x0012_020 Product Number SAMAE Product Series

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

273

Atmel SAMAE [DATASHEET] 274

11157C-ATARM-25-Jul-13

15.

Reset Controller (RSTC)

15.1 Embedded Characteristics

e Manages all Resets of the System, Including
e External Devices through the NRST Pin
e Processor Reset
e Peripheral Set Reset
e Based on Embedded Power-on Cell
® Reset Source Status
e Status of the Last Reset
e Either Software Reset, User Reset, Watchdog Reset
e External Reset Signal Shaping

15.2 Block Diagram

Figure 15-1. Reset Controller Block Diagram

Reset Controller

core_backup_reset
——> rstc_irq

vddcore_nreset

Reset > proc_nreset
user_reset State
NRST Manager
I:I_ NRST > periph_nreset
Manager
nrst_out
— exter_nreset

WDRPROC

wd_fault

SLCK

15.3 Functional Description

15.3.1 Reset Controller Overview

The Reset Controller is made up of an NRST Manager and a Reset State Manager. It runs at Slow Clock and generates
the following reset signals:

e proc_nreset: Processor reset line. It also resets the Watchdog Timer

e periph_nreset: Affects the whole set of embedded peripherals

e nrst_out: Drives the NRST pin
These reset signals are asserted by the Reset Controller, either on external events or on software action. The Reset
State Manager controls the generation of reset signals and provides a signal to the NRST Manager when an assertion of
the NRST pin is required.

SAMA4E [DATASHEET] 275

/Itl Y |eL 11157C-ATARM-25-Jul-13

The NRST Manager shapes the NRST assertion during a programmable time, thus controlling external device resets.

The Reset Controller Mode Register (RSTC_MR), allowing the configuration of the Reset Controller, is powered with
VDDIO, so that its configuration is saved as long as VDDIO is on.

15.3.2 NRST Manager

After power-up, NRST is an output during the ERSTL time period defined in the RSTC_MR. When ERSTL has elapsed,
the pin behaves as an input and all the system is held in reset if NRST is tied to GND by an external signal.

The NRST Manager samples the NRST input pin and drives this pin low when required by the Reset State Manager.
Figure 15-2 shows the block diagram of the NRST Manager.

Figure 15-2. NRST Manager
RSTC_MR

RSTC_SR URSTIEN
URSTS
—):D_, rstc_irg
NRSTL | rsTC_MR Other [

URSTEN interrupt
sources

> user_reset

NRST | RSTC_MR
1
| nrst_out

I External Reset Timer fe«————— exter_nreset

15.3.2.1 NRST Signal or Interrupt

The NRST Manager samples the NRST pin at Slow Clock speed. When the line is detected low, a User Reset is reported
to the Reset State Manager.

However, the NRST Manager can be programmed to not trigger a reset when an assertion of NRST occurs. Writing the
bit URSTEN at 0 in RSTC_MR disables the User Reset trigger.

The level of the pin NRST can be read at any time in the bit NRSTL (NRST level) in RSTC_SR. As soon as the pin NRST
is asserted, the bit URSTS in RSTC_SR is set. This bit clears only when RSTC_SR is read.

The Reset Controller can also be programmed to generate an interrupt instead of generating a reset. To do so, the bit
URSTIEN in RSTC_MR must be written at 1.

15.3.2.2 NRST External Reset Control

The Reset State Manager asserts the signal ext_nreset to assert the NRST pin. When this occurs, the “nrst_out” signal is
driven low by the NRST Manager for a time programmed by the field ERSTL in RSTC_MR. This assertion duration,
named EXTERNAL_RESET_LENGTH, lasts 2ERSTH*1) glow Clock cycles. This gives the approximate duration of an
assertion between 60 ps and 2 seconds. Note that ERSTL at O defines a two-cycle duration for the NRST pulse.

This feature allows the Reset Controller to shape the NRST pin level, and thus to guarantee that the NRST line is driven
low for a time compliant with potential external devices connected on the system reset.

As the ERSTL field is within RSTC_MR register, which is backed-up, it can be used to shape the system power-up reset
for devices requiring a longer startup time than the Slow Clock Oscillator.

Atmel SAMAE [DATASHEET] 276

11157C-ATARM-25-Jul-13

15.3.3 Brownout Manager

The Brownout manager is embedded within the Supply Controller, please refer to the product Supply Controller section
for a detailed description.
15.3.4 Reset States

The Reset State Manager handles the different reset sources and generates the internal reset signals. It reports the reset
status in the field RSTTYP of the Status Register (RSTC_SR). The update of the field RSTTYP is performed when the
processor reset is released.

15.3.4.1 General Reset

A general reset occurs when a Power-on-reset is detected, a Brownout or a Voltage regulation loss is detected by the
Supply controller. The vddcore_nreset signal is asserted by the Supply Controller when a general reset occurs.

All the reset signals are released and the field RSTTYP in RSTC_SR reports a General Reset. As the RSTC_MR is
reset, the NRST line rises 2 cycles after the vddcore_nreset, as ERSTL defaults at value 0x0.

Figure 15-3 shows how the General Reset affects the reset signals.

Figure 15-3. General Reset State

soc UL LT

backup_nreset

=2 cycles

proc_nreset

RSTTYP XXX 0x0 = General Reset XXX

periph_nreset

NRST
(nrst_out)

]
|
P S S S
]
i
]

EXTERNAL RESET LENGTH
=2 cycles
15.3.4.2 Backup Reset

A Backup reset occurs when the chip returns from Backup Mode. The core_backup_reset signal is asserted by the
Supply Controller when a Backup reset occurs.

The field RSTTYP in RSTC_SR is updated to report a Backup Reset.

15.3.4.3 User Reset

The User Reset is entered when a low level is detected on the NRST pin and the bit URSTEN in RSTC_MR is at 1. The
NRST input signal is resynchronized with SLCK to insure proper behavior of the system.

The User Reset is entered as soon as a low level is detected on NRST. The Processor Reset and the Peripheral Reset
are asserted.

The User Reset is left when NRST rises, after a two-cycle resynchronization time and a 3-cycle processor startup. The
processor clock is re-enabled as soon as NRST is confirmed high.

Atmel SAMAE [DATASHEET] 277

11157C-ATARM-25-Jul-13

When the processor reset signal is released, the RSTTYP field of the Status Register (RSTC_SR) is loaded with the
value 0x4, indicating a User Reset.

The NRST Manager guarantees that the NRST line is asserted for EXTERNAL_RESET_LENGTH Slow Clock cycles, as
programmed in the field ERSTL. However, if NRST does not rise after EXTERNAL_RESET_LENGTH because it is
driven low externally, the internal reset lines remain asserted until NRST actually rises.

Figure 15-4. User Reset State

see L[LMLy
MK o gEpEpERE
NRST \ /

Resynch. Resynch. Processor Startup
2 cycles 2 cycles =2cycles
proc_nreset
RSTTYP Any XXX 0x4 = User Reset

periph_nreset

NRST
(nrst_out)

>= EXTERNAL RESET LENGTH

15.3.4.4 Software Reset

The Reset Controller offers several commands used to assert the different reset signals. These commands are
performed by writing the Control Register (RSTC_CR) with the following bits at 1:

e PROCRST: Writing PROCRST at 1 resets the processor and the watchdog timer
e PERRST: Writing PERRST at 1 resets all the embedded peripherals including the memory system, and, in
particular, the Remap Command. The Peripheral Reset is generally used for debug purposes.

Except for debug purposes, PERRST must always be used in conjunction with PROCRST (PERRST and
PROCRST set both at 1 simultaneously).

EXTRST: Writing EXTRST at 1 asserts low the NRST pin during a time defined by the field ERSTL in the Mode
Register (RSTC_MR).

The software reset is entered if at least one of these bits is set by the software. All these commands can be performed
independently or simultaneously. The software reset lasts 3 Slow Clock cycles.

The internal reset signals are asserted as soon as the register write is performed. This is detected on the Master Clock
(MCK). They are released when the software reset is left, i.e.; synchronously to SLCK.

If EXTRST is set, the nrst_out signal is asserted depending on the programming of the field ERSTL. However, the
resulting falling edge on NRST does not lead to a User Reset.

If and only if the PROCRST bit is set, the Reset Controller reports the software status in the field RSTTYP of the Status
Register (RSTC_SR). Other Software Resets are not reported in RSTTYP.

Atmel SAMAE [DATASHEET] 278

11157C-ATARM-25-Jul-13

As soon as a software operation is detected, the bit SRCMP (Software Reset Command in Progress) is set in the Status
Register (RSTC_SR). It is cleared as soon as the software reset is left. No other software reset can be performed while
the SRCMP bit is set, and writing any value in RSTC_CR has no effect.

Figure 15-5. Software Reset

SLCK | | | |

MCK Any
Freq.

LU L L L
eSS NEN.

L LI L L
L 1L =

D v

Write RSTC_CR

Resynch/Processor Startup
1 cycle =2 cycles

x/

proc_nreset
if PROCRST=1

RSTTYP Any XXX 0x3 = Software Reset

periph_nreset
if PERRST=1

NRST
(nrst_out)
if EXTRST=1 <

//><(

EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

SRCMP in RSTC_SR

/

-

15.3.4.5 Watchdog Reset
The Watchdog Reset is entered when a watchdog fault occurs. This state lasts 3 Slow Clock cycles.
When in Watchdog Reset, assertion of the reset signals depends on the WDRPROC bit in WDT_MR:

e If WDRPROC is 0, the Processor Reset and the Peripheral Reset are asserted. The NRST line is also asserted,
depending on the programming of the field ERSTL. However, the resulting low level on NRST does not result in a

User Reset state.
e If WDRPROC =1, only the processor reset is asserted.

The Watchdog Timer is reset by the proc_nreset signal. As the watchdog fault always causes a processor reset if
WDRSTEN is set, the Watchdog Timer is always reset after a Watchdog Reset, and the Watchdog is enabled by default

and with a period set to a maximum.
When the WDRSTEN in WDT_MR bit is reset, the watchdog fault has no impact on the reset controller.

Atmel SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

Figure 15-6. Watchdog Reset

see 0L L L L L L L
K Fo JEpEREREREREREN
wd_fault /] N

Prockssor Startup|

2 cycles

proc_nreset

RSTTYP Any XXX 0x2 = Watchdog Reset

periph_nreset

Only if
WDRPROC =0

NRST
(nrst_out)

I EXTERNAL RESET LENGTH
8 cycles (ERSTL=2)

15.3.5 Reset State Priorities
The Reset State Manager manages the following priorities between the different reset sources, given in descending
order:
e General Reset
Backup Reset
Watchdog Reset
Software Reset
User Reset

Particular cases are listed below:

e When in User Reset:
e A watchdog event is impossible because the Watchdog Timer is being reset by the proc_nreset signal.
e A software reset is impossible, since the processor reset is being activated.

e When in Software Reset:
e A watchdog event has priority over the current state.
e The NRST has no effect.

e When in Watchdog Reset:
e The processor reset is active and so a Software Reset cannot be programmed.
e A User Reset cannot be entered.

Atmel SAMAE [DATASHEET] 280

11157C-ATARM-25-Jul-13

15.3.6 Reset Controller Status Register

The Reset Controller status register (RSTC_SR) provides several status fields:

e RSTTYP field: This field gives the type of the last reset, as explained in previous sections.

e SRCMP bit: This field indicates that a Software Reset Command is in progress and that no further software reset
should be performed until the end of the current one. This bit is automatically cleared at the end of the current
software reset.

e NRSTL bit: The NRSTL bit of the Status Register gives the level of the NRST pin sampled on each MCK rising
edge.

e URSTS bit: A high-to-low transition of the NRST pin sets the URSTS bit of the RSTC_SR register. This transition is
also detected on the Master Clock (MCK) rising edge (see Figure 15-7). If the User Reset is disabled (URSTEN =
0) and if the interruption is enabled by the URSTIEN bit in the RSTC_MR register, the URSTS bit triggers an
interrupt. Reading the RSTC_SR status register resets the URSTS bit and clears the interrupt.

Figure 15-7. Reset Controller Status and Interrupt

read
Peripheral Access RSTC SR
2 cycle 2 cycle
resync¢hronizatipn resynchronization]
NRST _\/’—\ N
NRSTL
URSTS /
if (URSTEN =r%t)C Eir:g / - 1
(URSTIEN = 1)
SAMA4E [DATASHEET)] 281
AtmeL 11157C-ATARM-25-Jul-13

15.4 Reset Controller (RSTC) User Interface

Table 15-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSTC_CR Write-only -

0x04 Status Register RSTC_SR Read-only 0x0000_0000
0x08 Mode Register RSTC_MR Read-write 0x0000 0001

Atmel SAMAE [DATASHEET] 282

11157C-ATARM-25-Jul-13

15.4.1 Reset Controller Control Register

Name: RSTC_CR

Address: 0x400E1800

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | — | - | - | EXTRST | PERRST | - | PROCRST |

PROCRST: Processor Reset
0 = No effect.

1 = If KEY is correct, resets the processor.

PERRST: Peripheral Reset
0 = No effect.

1 = If KEY is correct, resets the peripherals.

» EXTRST: External Reset
0 = No effect.

1 = If KEY is correct, asserts the NRST pin and resets the processor and the peripherals.

» KEY: System Reset Key

Value Name Description

0xA5 PASSWD Writing any other value in this field aborts the write operation.

Atmel SAMAE [DATASHEET] 283

11157C-ATARM-25-Jul-13

15.4.2 Reset Controller Status Register

Name: RSTC_SR
Address: 0x400E1804
Access: Read-only

31 30 29 28 27 26 25 24
[1T - 1 - S I R —
23 22 21 20 19 18 17 16
| — | - | - — | - | - |SRCMP NRSTL |
15 14 13 12 11 10 9 8
| - | - | - - | - | RSTTYP |
7 6 5 4 3 2 1 0
I N R SR R - - URSTS |

* URSTS: User Reset Status
0 = No high-to-low edge on NRST happened since the last read of RSTC_SR.

1 = At least one high-to-low transition of NRST has been detected since the last read of RSTC_SR.

e RSTTYP: Reset Type

Value Name Description
0 General Reset First power-up Reset
1 Backup Reset Return from Backup Mode
2 Watchdog Reset Watchdog fault occurred
3 Software Reset Processor reset required by the software
4 User Reset NRST pin detected low

Reports the cause of the last processor reset. Reading this RSTC_SR does not reset this field.

* NRSTL: NRST Pin Level
Registers the NRST Pin Level at Master Clock (MCK).

 SRCMP: Software Reset Command in Progress
0 = No software command is being performed by the reset controller. The reset controller is ready for a software command.

1 = A software reset command is being performed by the reset controller. The reset controller is busy.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

284

15.4.3 Reset Controller Mode Register

Name: RSTC_MR

Address: 0x400E1808

Access: Read-write
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I S R - : - —]
15 14 13 12 11 10 9 8

| - | - - | - | ERSTL |
7 6 5 4 3 2 1 0

| - | — | URSTIEN | - — - URSTEN |

* URSTEN: User Reset Enable
0 = The detection of a low level on the pin NRST does not generate a User Reset.

1 = The detection of a low level on the pin NRST triggers a User Reset.

e URSTIEN: User Reset Interrupt Enable

0 = USRTS bitin RSTC_SR at 1 has no effect on rstc_irg.
1 =USRTS bitin RSTC_SR at 1 asserts rstc_irg if URSTEN = 0.

» ERSTL: External Reset Length

This field defines the external reset length. The external reset is asserted during a time of 2ERST-*D Sjow Clock cycles. This
allows assertion duration to be programmed between 60 us and 2 seconds.

« KEY: Write Access Password

Value Name Description

Writing any other value in this field aborts the write operation.
O0xA5 PASSWD

Always reads as 0.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

285

Atmel SAMAE [DATASHEET] 286

11157C-ATARM-25-Jul-13

16.

Real-time Timer (RTT)

16.1 Description

The Real-time Timer is built around a 32-bit counter used to count roll-over events of the programmable 16-bit prescaler
which enables counting elapsed seconds from a 32 kHz slow clock source. It generates a periodic interrupt and/or
triggers an alarm on a programmed value.

It can be configured to be driven by the 1 Hz signal generated by the RTC, thus taking advantage of a calibrated 1 Hz

clock.

The slow clock source can be fully disabled to reduce power consumption when RTT is not required.

16.2 Embedded Characteristics

e 32-bit Free-running Counter on prescaled slow clock or RTC calibrated 1 Hz clock

e 16-bit Configurable Prescaler
e Interrupt on Alarm

16.3 Block Diagram

Figure 16-1. Real-time Timer

RTT_MR

—

RTT_MR RTT_MR RTT_MR
RTTDIS | | RTTRSTl |RTPRES
reload
SLCK 16-bit
Divider
RTC 1Hz
RTT_MR

|
RTC1HZ Hl | 0/

| RTTRSTHl 0/
|

32-bit

> Counter

RTT_VR | CRTV |

set

RTT_AR | ALMV

RTT_MR

RTTINCIEN

Atmel

RTT_SR | RTTINC Il

reset
rtt_int
read o RTT_MR
RTT_SR -

reset

RTT_SR ALMS II
> set

rtt_alarm
SAM4E [DATASHEET)] 287

11157C-ATARM-25-Jul-13

16.4

Functional Description

The Real-time Timer can be used to count elapsed seconds. It is built around a 32-bit counter fed by Slow Clock divided
by a programmable 16-bit value. The value can be programmed in the field RTPRES of the Real-time Mode Register
(RTT_MR).

Programming RTPRES at 0x00008000 corresponds to feeding the real-time counter with a 1 Hz signal (if the Slow Clock
is 32.768 kHz). The 32-bit counter can count up to 232 seconds, corresponding to more than 136 years, then roll over to
0.

The real-time 32-bit counter can also be supplied by the RTC 1 Hz clock. This mode is interesting when the RTC 1Hz is
calibrated (CORRECTION field of RTC_MR register differs from 0) in order to guaranty the synchronism between RTC
and RTT counters.

Setting the RTC 1HZ clock to 1 in RTT_MR register allows to drive the 32-bit RTT counter with the RTC 1Hz clock. In this
mode, RTPRES field has no effect on 32-bit counter but RTTINC is still triggered by RTPRES.

The Real-time Timer can also be used as a free-running timer with a lower time-base. The best accuracy is achieved by
writing RTPRES to 3. Programming RTPRES to 1 or 2 is possible, but may result in losing status events because the
status register is cleared two Slow Clock cycles after read. Thus if the RTT is configured to trigger an interrupt, the
interrupt occurs during 2 Slow Clock cycles after reading RTT_SR. To prevent several executions of the interrupt
handler, the interrupt must be disabled in the interrupt handler and re-enabled when the status register is clear.

The Real-time Timer value (CRTV) can be read at any time in the register RTT_VR (Real-time Value Register). As this
value can be updated asynchronously from the Master Clock, it is advisable to read this register twice at the same value
to improve accuracy of the returned value.

The current value of the counter is compared with the value written in the alarm register RTT_AR (Real-time Alarm
Register). If the counter value matches the alarm, the bit ALMS in RTT_SR is set. The alarm register is set to its
maximum value, corresponding to OXFFFF_FFFF, after a reset.

The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR register) when writing a new ALMV value in
Real-time Alarm Register.

The bit RTTINC in RTT_SR is set each time there is a prescaler roll-over, so each time the Real-time Timer counter is
incremented if RTC1HZ=0 else if RTC1HZ=1 the RTTINC bit can be triggered according to RTPRES value, in a fully
independent way from the 32-bit counter increment. This bit can be used to start a periodic interrupt, the period being one
second when the RTPRES is programmed with 0x8000 and Slow Clock equal to 32.768 Hz.

The RTTINCIEN field must be cleared prior to write a new RTPRES value in RTT_MR register.
Reading the RTT_SR status register resets the RTTINC and ALMS fields.

Writing the bit RTTRST in RTT_MR immediately reloads and restarts the clock divider with the new programmed value.
This also resets the 32-bit counter.

When not used, the Real-time Timer can be disabled in order to suppress dynamic power consumption in this module.
This can be achieved by setting the RTTDIS field to 1 in RTT_MR register.

Atmel SAMAE [DATASHEET] 288

11157C-ATARM-25-Jul-13

Figure 16-2. RTT Counting

RTPRES -1

Prescaler

0

RTT

RTTINC (RTT_SR)

ALMS (RTT_SR)

APB Interface

Atmel

APB cycle

<>

=

U UIui

APB cycle
<>

d

yd

iV

ALMV-

1

ALMV

ALMV+1

ALMV+2 X ALMY+3

/

read RTT_SR

SAMAE [DATASHEET] 289

11157C-ATARM-25-Jul-13

16.5 Real-time Timer (RTT) User Interface

Table 16-1. Register Mapping

Offset Register Name Access Reset

0x00 Mode Register RTT_MR Read-write 0x0000_8000
0x04 Alarm Register RTT_AR Read-write OXFFFF_FFFF
0x08 Value Register RTT_VR Read-only 0x0000_0000
0x0C Status Register RTT_SR Read-only 0x0000_0000

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

290

16.5.1 Real-time Timer Mode Register

Name: RTT_MR

Address: 0x400E1830

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - | RTCiHZ |
23 22 21 20 19 18 17 16

| - | - | - | RTTDIS | - | RTTRST | RTTINCIEN | ALMIEN |
15 14 13 12 11 10 9 8

| RTPRES |
7 6 5 4 3 2 1 0

| RTPRES |

* RTPRES: Real-time Timer Prescaler Value

Defines the number of SLCK periods required to increment the Real-time timer. RTPRES is defined as follows:
RTPRES = 0: The prescaler period is equal to 226 * SCLK period.

RTPRES # 0: The prescaler period is equal to RTPRES * SCLK period.

Note: The RTTINCIEN field must be cleared prior to write a new RTPRES value.

ALMIEN: Alarm Interrupt Enable
0 = The bit ALMS in RTT_SR has no effect on interrupt.
1 = The bit ALMS in RTT_SR asserts interrupt.

RTTINCIEN: Real-time Timer Increment Interrupt Enable
0 =The bit RTTINC in RTT_SR has no effect on interrupt.
1 =The bit RTTINC in RTT_SR asserts interrupt.

e RTTRST: Real-time Timer Restart
0 = No effect.

1 = Reloads and restarts the clock divider with the new programmed value. This also resets the 32-bit counter.

» RTTDIS: Real-time Timer Disable

0 = The real-time timer is enabled.

1 = The real-time timer is disabled (no dynamic power consumption).
Note: RTTDIS is write only.

* RTC1HZ: Real-Time Clock 1Hz Clock Selection

0 = The RTT 32-bit counter is driven by the 16-bit prescaler roll-over events.
1 =The RTT 32-bit counter is driven by the RTC 1 Hz clock.

Note: RTC1HZ is write only.

Atmel SAM4E [DATASHEET] 291

11157C-ATARM-25-Jul-13

16.5.2 Real-time Timer Alarm Register

Name: RTT_AR

Address: 0x400E1834

Access: Read-write
31 30 29 28 27 26 25 24

| ALMV |
23 22 21 20 19 18 17 16

| ALMV |
15 14 13 12 11 10 9 8

| ALMV |
7 6 5 4 3 2 1 0

| ALMV |

* ALMV: Alarm Value

Defines the alarm value (ALMV+1) compared with the Real-time Timer.

Note: The alarm interrupt must be disabled (ALMIEN must be cleared in RTT_MR register) when writing a new ALMV

value.

16.5.3 Real-time Timer Value Register

Name: RTT_VR

Address: 0x400E1838

Access: Read-only
31 30 29 28 27 26 25 24

| CRTV |
23 22 21 20 19 18 17 16

| CRTV |
15 14 13 12 11 10 9 8

| CRTV |
7 6 5 4 3 2 1 0

| CRTV |

e CRTV: Current Real-time Value
Returns the current value of the Real-time Timer.

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

292

16.5.4 Real-time Timer Status Register

Name: RTT_SR

Address: 0x400E183C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | RTTINC | ALMS |

* ALMS: Real-time Alarm Status
0 = The Real-time Alarm has not occurred since the last read of RTT_SR.

1 = The Real-time Alarm occurred since the last read of RTT_SR.

e RTTINC: Real-time Timer Increment
0 = The Real-time Timer has not been incremented since the last read of the RTT_SR.

1 = The Real-time Timer has been incremented since the last read of the RTT_SR.

Atmel SAMAE [DATASHEET] 293

11157C-ATARM-25-Jul-13

Atmel SAMAE [DATASHEET] 294

11157C-ATARM-25-Jul-13

17. Reinforced Safety Watchdog Timer (RSWDT)

17.1 Description

When two watchdog timers are implemented in a device, the second one, the Reinforced Safety Watchdog Timer
(RSWDT) works in parallel with the Watchdog Timer (WDT) to reinforce safe watchdog operations.

The Reinforced Safety Watchdog Timer (RSWDT) can be used to reinforce the safety level provided by the Watchdog
Timer (WDT) in order to prevent system lock-up if the software becomes trapped in a deadlock. The RSWDT works
in a fully operable mode, independent of the Watchdog Timer. Its clock source is automatically selected from either
the slow RC oscillator clock or main RC oscillator divided clock to get an equivalent slow RC oscillator clock. If the
Watchdog Timer clock source (for example the 32 kHz crystal oscillator) fails, the system lock-up is no longer monitored
by the Watchdog Timer as the second watchdog timer, RSWDT, will perform the monitoring. Thus, there is no lack
of safety irrespective of the external operating conditions. This Reinforced Safety Watchdog Timer shares the same
features as the Watchdog Timer (i.e. a 12-bit down counter that allows a watchdog period of up to 16 seconds with slow
clock at 32.768 kHz). It can generate a general reset or a processor reset only. In addition, it can be stopped while
the processor is in debug mode or idle mode.

17.2 Embedded Characteristics

e System safety level reinforced by means of an independent second watchdog timer
Automatically selected reliable independent clock source other than that of first watchdog timer
12-bit Key-protected programmable counter
Provides reset or interrupt signals to the system
Counter may be stopped while the processor is in debug state or in idle mode

SAMA4E [DATASHEET] 295
AtmeL 11157C-ATARM-25-Jul-13

17.3 Block Diagram

Figure 17-1. Reinforced Safety Watchdog Timer Block Diagram

write RSWDT_MR

RSWDT_CR

| WDRSTT |

RSWDT_MR
WDV

—

reload y—
\1_:0

read RSWDT_SR
or

12-bit Down
Counter
RSWDT_MR i
| WD[M Current
Value

main RC frequency main RC clock

divider <

Automatic selection
[CKGR_MOR.MOSCRCEN=0
and
(WDT_MR.WDDIS
or
SUPC_MR.XTALSEL=1)]

reload 0
4

'| 1/128 |

1 fje——slow RC clock

<=WDD
RSWDT_MR
t WDRSTEN
=0
AN rswdt_fault
)) > (to Reset Controller)
| set (ORed with wdt_fault)
| WDUNF rswdt_int
set reset (ORed with wdt_int)
—
WDERRl
Mreset WDFIEN

reset

Atmel

RSWDT_MR

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

17.4 Functional Description

The Reinforced Safety Watchdog Timer (RSWDT) can be used to prevent system lock-up if the software becomes
trapped in a deadlock. It is supplied with VDDCORE. RSWDT is initialized with default values on processor reset, or
power-on sequence and is disabled (it's default mode) under such conditions.

The Reinforced Safety Watchdog Timer works in a fully independent mode distinct from the Watchdog Timer (WDT). Its
clock source is automatically selected from either slow RC oscillator clock or main RC oscillator divided clock to get an
equivalent slow RC oscillator clock. If the Watchdog Timer (WDT), clock source (for example the 32 kHz crystal
oscillator) fails, the system lock-up is no longer monitored by the WDT, but the second watchdog timer, the RSWDT wiill
perform the monitoring. Therefore, continuous safety is assured regardless of the external operating conditions.

The selection of the Reinforced Safety Watchdog Timer clock source consists of a combination of the state of the main
RC oscillator (field MOSCRCEN in CKGR_MOR register), Watchdog Timer (field WDDIS of WDT_MR register) and slow
clock selection (field XTALSEL in the SUPC_MR register). The Reinforced Safety Watchdog Timer is driven by the slow
RC oscillator if the main RC oscillator is not already in use, and either the selected slow clock is the 32 kHz crystal
oscillator, or the Watchdog Timer (WDT) is disabled. Accordingly, slow or main RC oscillators are automatically enabled.

The RSWDT is built around a 12-bit down counter, which is loaded with a slow clock value other than that of the slow
clock in the Watchdog Timer, defined in the WDV field of the Mode Register (RSWDT_MR). The Reinforced Safety
Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum watchdog period to be 16 seconds (with
a typical Slow Clock of 32.768 kHz).

After a processor reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the external
reset generation enabled (WDRSTEN field at 1 after a backup reset). This means that a default watchdog is running at
reset, i.e., at power-up.

The Mode Register (RSWDT_MR) can be written only once. Only a processor reset resets it. Writing the RSWDT_MR
register reloads the timer with the newly programmed mode parameters.

In normal operation, the user reloads the watchdog at regular intervals before the timer underflow occurs, by writing the
Control Register (RSWDT_CR) with the bit WDRSTT to 1. The watchdog counter is then immediately reloaded from
RSWDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The RSWDT_CR register is write-
protected. As a result, writing RSWDT_CR without the correct hard-coded key has no effect. If an underflow does occur,
the “wdt_fault” signal to the reset controller is asserted if the bit WDRSTEN is set in the Mode Register (RSWDT_MR).
Moreover, the bit WDUNF is set in the Status Register (RSWDT_SR).

To prevent a software deadlock that continuously triggers the RSWDT, the reload of the RSWDT must occur while the
watchdog counter is within a window between 0 and WDD, WDD is defined in the Mode Register, RSWDT_MR.

Any attempt to restart the watchdog while the watchdog counter is between WDV and WDD results in a watchdog error,
even if the RSWDT is disabled. The WDERR bit is updated in the RSWDT_SR and the “wdt_fault” signal to the reset
controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such a
configuration, restarting the Reinforced Safety Watchdog Timer is permitted in the whole range [0; WDV] and does not
generate an error. This is the default configuration on reset (the WDD and WDV values are equal).

The status bits, WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the
WDFIEN bit is set in the mode register. The signal “wdt_fault” to the reset controller causes a Watchdog reset if the
WDRSTEN bit is set as explained in the reset controller programmer’s documentation. In that case, the processor and
the watchdog timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated, or if RSWDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault”
signal to the reset controller is deasserted.

Writing the RSWDT_MR reloads and restarts the down counter.
The RSWDT is disabled after any power-on sequence.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value programmed
for the WDIDLEHLT and WDDBGHLT bits in the RSWDT_MR.

Atmel SAMAE [DATASHEET] 297

11157C-ATARM-25-Jul-13

Figure 17-2. Watchdog Behavior

FFF.

Watchdog Error

Watchdog Underflow ———

if WDRSTEN is 1

WDV

Normal behavior

if WDRSTEN is O

Forbidden
Window

WDD

pad

Permitted
Window

NN
‘\\\\\\\

N

/

N

.Watchdog
Fault

Atmel

RSWDT_CR =WDRSTT

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

298

17.5 Reinforced Safety Watchdog Timer (RSWDT) User Interface

Table 17-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RSWDT_CR Write-only -

0x04 Mode Register RSWDT_MR Read-write Once Ox3FFF_AFFF
0x08 Status Register RSWDT_SR Read-only 0x0000_0000

Atmel SAMAE [DATASHEET] 299

11157C-ATARM-25-Jul-13

17.5.1 Reinforced Safety Watchdog Timer Control Register

Name: RSWDT_CR

Address: 0x400E1900

Access: Write-only
31 30 29 28 27 26 25 24

| KEY |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | - | WDRSTT |

« WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the watchdog.

» KEY: Password
Should be written at value OxC4. Writing any other value in this field aborts the write operation.

Atmel SAMAE [DATASHEET] 300

11157C-ATARM-25-Jul-13

17.5.2 Reinforced Safety Watchdog Timer Mode Register

Name: RSWDT_MR

Address: 0x400E1904

Access: Read-write Once
31 30 29 28 27 26 25 24

| | | WDIDLEHLT | WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[WDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

 WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit watchdog counter.

» WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a watchdog reset.

« WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

 WDD: Watchdog Delta Value

Defines the permitted range for reloading the watchdog timer.

If the watchdog timer value is less than or equal to WDD, writing RSWDT_CR with WDRSTT = 1 restarts the timer.
If the watchdog timer value is greater than WDD, writing RSWDT_CR with WDRSTT = 1 causes a Watchdog error.

e WDDBGHLT: Watchdog Debug Halt
0: The watchdog runs when the processor is in debug state.

1: The watchdog stops when the processor is in debug state.

 WDIDLEHLT: Watchdog Idle Halt
0: The watchdog runs when the system is in idle mode.

1: The watchdog stops when the system is in idle state.

« WDDIS: Watchdog Disable
0: Enables the watchdog timer.

Atmel SAM4E [DATASHEET] 301

11157C-ATARM-25-Jul-13

1: Disables the watchdog timer.

17.5.3 Reinforced Safety Watchdog Timer Status Register

Name: RSWDT_SR

Address: 0x400E1908

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow
0: No watchdog underflow occurred since the last read of RSWDT_SR.

1: At least one watchdog underflow occurred since the last read of RSWDT_SR.

WDERR: Watchdog Error
0: No watchdog error occurred since the last read of RSWDT_SR.

1: At least one watchdog error occurred since the last read of RSWDT_SR.

Atmel SAMAE [DATASHEET] 302

11157C-ATARM-25-Jul-13

18. Real-time Clock (RTC)

18.1 Description
The Real-time Clock (RTC) peripheral is designed for very low power consumption.
It combines a complete time-of-day clock with alarm and a two-hundred-year Gregorian or Persian calendar,
complemented by a programmable periodic interrupt. The alarm and calendar registers are accessed by a 32-bit data
bus.
The time and calendar values are coded in binary-coded decimal (BCD) format. The time format can be 24-hour mode or
12-hour mode with an AM/PM indicator.

Updating time and calendar fields and configuring the alarm fields are performed by a parallel capture on the 32-bit data
bus. An entry control is performed to avoid loading registers with incompatible BCD format data or with an incompatible
date according to the current month/year/century.

A clock divider calibration circuitry enables to compensate crystal oscillator frequency inaccuracy.

An RTC output can be programmed to generate several waveforms, including a prescaled clock derived from 32.768 kHz

18.2 Embedded Characteristics
Ultra Low Power Consumption
Full Asynchronous Design
Gregorian Calendar up to 2099 or Persian Calendar
Programmable Periodic Interrupt
Safety/security features:
e Valid Time and Date Programmation Check
e On-The-Fly Time and Date Validity Check
Crystal Oscillator Clock Calibration
Waveform Generation

SAMAE [DATASHEET] 303
AtmeL 11157C-ATARM-25-Jul-13

18.3

Block Diagram

Figure 18-1. RTC Block Diagram

18.4

18.4.1

18.4.2

18.5

18.5.1

18.5.2

! }
Slow Clock: SLCK 32768 Divider Ti Dat Wave |—> RTCOUTO
ime ate Generator —» RTCOUT1

e TR
3 b 1 ia—

Entry Interrupt
APB <==t==p| User Interface Control Alarm Control RTC Interrupt

Product Dependencies

Power Management

The Real-time Clock is continuously clocked at 32768 Hz. The Power Management Controller has no effect on RTC
behavior.

Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years), month,
date, day, hours, minutes and seconds.

The valid year range is 1900 to 2099 in Gregorian mode, a two-hundred-year calendar(or 1300 to 1499 in Persian mode).
The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.
Corrections for leap years are included (all years divisible by 4 being leap years). This is correct up to the year 2099.

The RTC can generate configurable waveforms on RTCOUTO/1 outputs.

Reference Clock
The reference clock is Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal selection has
to take into account the current consumption for power saving and the frequency drift due to temperature effect on the
circuit for time accuracy.

Timing
The RTC is updated in real time at one-second intervals in normal mode for the counters of seconds, at one-minute

intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read in the
RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is necessary to read

Atmel SAMAE [DATASHEET] 304

11157C-ATARM-25-Jul-13

18.5.3

18.5.4

18.5.5

these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of two and a maximum of
three accesses are required.

Alarm

The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:
e If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.
e If only the “seconds” field is enabled, then an alarm is generated every minute.

Depending on the combination of fields enabled, a large number of possibilities are available to the user ranging from
minutes to 365/366 days.

Hour, minute and second matching alarm (SECEN, MINEN, HOUREN) can be enabled independently of SEC, MIN,
HOUR fields.

Note: To change one of the SEC, MIN, HOUR, DATE, MONTH fields, it is recommended to disable the field before
changing the value and then re-enable it after the change has been made. This requires up to 3 accesses to the
RTC_TIMALR or RTC_CALALR registers. The first access clears the enable corresponding to the field to
change (SECEN,MINEN,HOUREN,DATEEN,MTHEN). If the field is already cleared, this access is not required.
The second access performs the change of the value (SEC, MIN, HOUR, DATE, MONTH). The third access is
required to re-enable the field by writing 1 in SECEN,MINEN,HOUREN,DATEEN,MTHEN fields.

Error Checking when Programming

Verification on user interface data is performed when accessing the century, year, month, date, day, hours, minutes,
seconds and alarms. A check is performed on illegal BCD entries such as illegal date of the month with regard to the year
and century configured.

If one of the time fields is not correct, the data is not loaded into the register/counter and a flag is set in the validity
register. The user can not reset this flag. It is reset as soon as an acceptable value is programmed. This avoids any
further side effects in the hardware. The same procedure is done for the alarm.
The following checks are performed:
1. Century (checkifitis in range 19 - 20 or 13-14 in Persian mode)
Year (BCD entry check)
Date (check range 01 - 31)
Month (check if it is in BCD range 01 - 12, check validity regarding “date”)
Day (check range 1 - 7)
Hour (BCD checks: in 24-hour mode, check range 00 - 23 and check that AM/PM flag is not set if RTC is set in 24-
hour mode; in 12-hour mode check range 01 - 12)
7. Minute (check BCD and range 00 - 59)
8. Second (check BCD and range 00 - 59)
Note: If the 12-hour mode is selected by means of the RTC_MR register, a 12-hour value can be programmed and the

returned value on RTC_TIMR will be the corresponding 24-hour value. The entry control checks the value of the
AM/PM indicator (bit 22 of RTC_TIMR register) to determine the range to be checked.

R e

RTC Internal Free Running Counter Error Checking

To improve the reliability and security of the RTC, a permanent check is performed on the internal free running counters
to report non-BCD or invalid date/time values.

An error is reported by TDERR bit in the status register (RTC_SR) if an incorrect value has been detected. The flag can
be cleared by programming the TDERRCLR in the RTC status clear control register (RTC_SCCR).

Atmel SAMA4E [DATASHEET] 305

11157C-ATARM-25-Jul-13

Anyway the TDERR error flag will be set again if the source of the error has not been cleared before clearing the TDERR
flag. The clearing of the source of such error can be done either by reprogramming a correct value on RTC_CALR and/or
RTC_TIMR registers.

The RTC internal free running counters may automatically clear the source of TDERR due to their roll-over (i.e. every 10
seconds for SECONDS[3:0] bitfield in RTC_TIMR register). In this case the TDERR is held high until a clear command is
asserted by TDERRCLR bit in RTC_SCCR register.

18.5.6 Updating Time/Calendar

To update any of the time/calendar fields, the user must first stop the RTC by setting the corresponding field in the
Control Register. Bit UPDTIM must be set to update time fields (hour, minute, second) and bit UPDCAL must be set to
update calendar fields (century, year, month, date, day).

Then the user must poll or wait for the interrupt (if enabled) of bit ACKUPD in the Status Register. Once the bit reads 1, it
is mandatory to clear this flag by writing the corresponding bit in RTC_SCCR. The user can now write to the appropriate
Time and Calendar register.

Once the update is finished, the user must reset (0) UPDTIM and/or UPDCAL in the Control

When entering programming mode of the calendar fields, the time fields remain enabled. When entering the
programming mode of the time fields, both time and calendar fields are stopped. This is due to the location of the
calendar logic circuity (downstream for low-power considerations). It is highly recommended to prepare all the fields to be
updated before entering programming mode. In successive update operations, the user must wait at least one second
after resetting the UPDTIM/UPDCAL bit in the RTC_CR (Control Register) before setting these bits again. This is done
by waiting for the SEC flag in the Status Register before setting UPDTIM/UPDCAL bit. After resetting UPDTIM/UPDCAL,
the SEC flag must also be cleared.

Atmel SAMAE [DATASHEET] 306

11157C-ATARM-25-Jul-13

Figure 18-2. Update Sequence

Atmel

Begin

Prepare TIme or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

<

Read RTC_SR

ACKUPD No

=17

Yes

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit in
RTC CR

End

Polling or
IRQ (if enabled)

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

307

18.5.7

18.5.8

RTC Accurate Clock Calibration

The crystal oscillator that drives the RTC may not be as accurate as expected mainly due to temperature variation. The
RTC is equipped with circuitry able to correct slow clock crystal drift.

To compensate for possible temperature variations over time, this accurate clock calibration circuitry can be programmed
on-the-fly and also programmed during application manufacturing, in order to correct the crystal frequency accuracy at
room temperature (20-25°C). The typical clock drift range at room temperature is £20 ppm.

In the device operating temperature range, the 32.768 kHz crystal oscillator clock inaccuracy can be up to -200 ppm.

The RTC clock calibration circuitry allows positive or negative correction in a range of 1.5 ppm to 1950 ppm. After
correction, the remaining crystal drift is as follows:

e Below 1 ppm, for an initial crystal drift between 1.5 ppm up to 90 ppm

e Below 2 ppm, for an initial crystal drift between 90 ppm up to 130 ppm

e Below 5 ppm, for an initial crystal drift between 130 ppm up to 200 ppm

The calibration circuitry acts by slightly modifying the 1 Hz clock period from time to time. When the period is modified,
depending on the sign of the correction, the 1 Hz clock period increases or reduces by around 4 ms. The period interval
between 2 correction events is programmable in order to cover the possible crystal oscillator clock variations.

The inaccuracy of a crystal oscillator at typical room temperature (20 ppm at 20-25 degrees Celsius) can be
compensated if a reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set
up during the final product manufacturing by means of measurement equipment embedding such a reference clock. The
correction of value must be programmed into the RTC Mode Register (RTC_MR), and this value is kept as long as the
circuitry is powered (backup area). Removing the backup power supply cancels this calibration. This room temperature
calibration can be further processed by means of the networking capability of the target application.

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an internal
prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the measure,
several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if the
application can access such a reference. If a reference time cannot be used, a temperature sensor can be placed close
to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once obtained, the temperature
may be converted using a lookup table (describing the accuracy/temperature curve of the crystal oscillator used) and
RTC_MR configured accordingly. The calibration can be performed on-the-fly. This adjustment method is not based on a
measurement of the crystal frequency/drift and therefore can be improved by means of the networking capability of the
target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case where a
reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of the application
crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and programming the HIGHPPM and
CORRECTION bitfields on RTC_MR according to the difference measured between the reference time and those of
RTC_TIMR.

Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC is the
only powered circuitry (low power mode of operation, backup mode) or in any active modes. Going into backup or low
power operating modes does not affect the waveform generation outputs.

The RTC outputs (RTCOUTO and RTCOUT1) have a source driver selected among 7 possibilities.

The first selection choice sticks the associated output at 0 (This is the reset value and it can be used at any time to
disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

Atmel SAMAE [DATASHEET] 308

11157C-ATARM-25-Jul-13

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking character
like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm occurs
and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 ps duration that can be used to drive external devices for
power consumption reduction or any other purpose.

PI1O lines associated to RTC outputs are automatically selecting these waveforms as soon as RTC_MR register
corresponding fields OUTO and OUT1 differ from 0.

Figure 18-3. Waveform Generation

0 —» N 0 —>» N
1Hz —>»|1 1Hz —3»|1
32Hz —>»|2 32Hz —>»|2
64Hz —>»|3 64Hz —>»|3
—» RTCOUTO —» RTCOUT1
512Hz —>»|4 512Hz —>» |4
toggle_alarm —» |5 toggle_alarm —» |5
flag_alarm —>» |6 flag_alarm —» |6
pulse —»|7 pulse —» |7
RTC_MR(OUTO) RTC_MR(OUT1)
alarm match alarm match
event 1 event 2
flag_alarm
| |
| RTC_SCCR(ALRCLR) | RTC_SCCR(ALRCLR)
toggle_alarm

pulse / [_L
I S Y S

i |
|(Tperiod > <

Atmel SAMAE [DATASHEET] 309

11157C-ATARM-25-Jul-13

18.6 Real-time Clock (RTC) User Interface

Table 18-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register RTC_CR Read-write 0x0
0x04 Mode Register RTC_MR Read-write 0x0
0x08 Time Register RTC_TIMR Read-write 0x0
0x0C Calendar Register RTC_CALR Read-write 0x01a11020
0x10 Time Alarm Register RTC_TIMALR Read-write 0x0
0x14 Calendar Alarm Register RTC_CALALR Read-write 0x01010000
0x18 Status Register RTC_SR Read-only 0x0
0x1C Status Clear Command Register RTC_SCCR Write-only -
0x20 Interrupt Enable Register RTC_IER Write-only -
0x24 Interrupt Disable Register RTC_IDR Write-only -
0x28 Interrupt Mask Register RTC_IMR Read-only 0x0
0x2C Valid Entry Register RTC_VER Read-only 0x0

0x30-0xC4 Reserved Register - - -
0xC8-0xF8 Reserved Register - - -

OxFC Reserved Register - - -

Note: If an offset is not listed in the table it must be considered as reserved.
/ItmeL SAMA4E [DATASHEET)] 310

11157C-ATARM-25-Jul-13

18.6.1 RTC Control Register

Name: RTC_CR

Address: 0x400E1860

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - - |
23 22 21 20 19 18 17 16

| - | — | - | - | - | - | CALEVSEL |
15 14 13 12 11 10 9 8

| - | - | - | - | - | — | TIMEVSEL |
7 6 5 4 3 2 1 0

| - | — | - | - | - | — [upDCAL uUPDTIM |

* UPDTIM: Update Request Time Register
0 = No effect.
1 = Stops the RTC time counting.

Time counting consists of second, minute and hour counters. Time counters can be programmed once this bit is set and acknowl-
edged by the bit ACKUPD of the Status Register.

» UPDCAL: Update Request Calendar Register
0 = No effect.
1 = Stops the RTC calendar counting.

Calendar counting consists of day, date, month, year and century counters. Calendar counters can be programmed once this bit
is set.

* TIMEVSEL: Time Event Selection
The event that generates the flag TIMEV in RTC_SR (Status Register) depends on the value of TIMEVSEL.

Value Name Description
0 MINUTE Minute change
1 HOUR Hour change
2 MIDNIGHT Every day at midnight
3 NOON Every day at noon

» CALEVSEL: Calendar Event Selection
The event that generates the flag CALEV in RTC_SR depends on the value of CALEVSEL

Value Name Description
0 WEEK Week change (every Monday at time 00:00:00)
1 MONTH Month change (every 01 of each month at time 00:00:00)
2 YEAR Year change (every January 1 at time 00:00:00)

Atmel SAM4E [DATASHEET] 311

11157C-ATARM-25-Jul-13

18.6.2 RTC Mode Register

Name: RTC_MR

Address: 0x400E1864

Access: Read-write
31 30 29 28 27 26 25 24

| _ | — TPERIOD | — | THIGH |
23 22 21 20 19 18 17 16

| - | OUT1 | — | ouTO |
15 14 13 12 11 10 9 8

[HiGHPPM | CORRECTION |
7 6 5 4 3 2 1 0

| — | = | — NEGPPM - - PERSIAN HRMOD |

« HRMOD: 12-/24-hour Mode
0 = 24-hour mode is selected.

1 = 12-hour mode is selected.

* PERSIAN: PERSIAN Calendar
0 = Gregorian Calendar.

1 = Persian Calendar.

« NEGPPM: NEGative PPM Correction

0 = positive correction (the divider will be slightly lower than 32768).
1 = negative correction (the divider will be slightly higher than 32768).
Refer to CORRECTION and HIGHPPM field descriptions.

» CORRECTION: Slow Clock Correction
0 = No correction

1..127 = The slow clock will be corrected according to the formula given below in HIGHPPM description.

* HIGHPPM: HIGH PPM Correction
0 = lower range ppm correction with accurate correction.
1 = higher range ppm correction with accurate correction.

If the absolute value of the correction to be applied is lower than 30ppm, it is recommended to clear HIGHPPM. HIGHPPM set to
1 is recommended for 30 ppm correction and above.

Formula:

If HIGHPPM = 0, then the clock frequency correction range is from 1.5 ppm up to 98 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 1.5 ppm up to 30 ppm..

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

3906

CORRECTION = ———— -
20 x ppm

Atmel SAMAE [DATASHEET] 312

11157C-ATARM-25-Jul-13

The value obtained must be rounded to the nearest integer prior to being programmed into CORRECTION field.

If HIGHPPM = 1, then the clock frequency correction range is from 30.5 ppm up to 1950 ppm. The RTC accuracy is less
than 1 ppm for a range correction from 30.5 ppm up to 90 ppm.

The correction field must be programmed according to the required correction in ppm, the formula is as follows:

CORRECTION =

3906 _,
ppm

The value obtained must be rounded to the nearest integer prior to be programmed into CORRECTION field.

If NEGPPM is set to 1, the ppm correction is negative.

* OUTO: RTCOUTO OutputSource Selection

Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse
 OUT1: RTCOUTL1 Output Source Selection
Value Name Description
0 NO_WAVE no waveform, stuck at ‘0’
1 FREQ1HZ 1 Hz square wave
2 FREQ32HZ 32 Hz square wave
3 FREQ64HZ 64 Hz square wave
4 FREQ512HZ 512 Hz square wave
5 ALARM_TOGGLE output toggles when alarm flag rises
6 ALARM_FLAG output is a copy of the alarm flag
7 PROG_PULSE duty cycle programmable pulse
e THIGH: High Duration of the Output Pulse
Value Name Description
0 H_31MS 31.2 ms
1 H_16MS 15.6 ms
2 H_4MS 3.915.7ms
3 H_976US 976 ps
4 H_488US 488 s

Atmel

SAMA4E [DATASHEET] 313

11157C-ATARM-25-Jul-13

Value Name Description
5 H_122US 122 ys
6 H_30US 30.5 ys
7 H_15US 15.2 us

» TPERIOD: Period of the Output Pulse

Value Name Description
0 P_1S 1 second
1 P_500MS 500 ms
2 P_250MS 250 ms
3 P_125MS 125 ms

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

314

18.6.3 RTC Time Register

Name: RTC_TIMR

Address: 0x400E1868

Access: Read-write
31 30 29 28 27 26 25 24

I - I - I - - - - - - I
23 22 21 20 19 18 17 16

| - [aAavem | HOUR |
15 14 13 12 11 10 9 8

| - | MIN |
7 6 5 4 3 2 1 0

| - | SEC |

* SEC: Current Second
The range that can be set is 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* MIN: Current Minute
The range that can be setis 0 - 59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* HOUR: Current Hour
The range that can be setis 1 - 12 (BCD) in 12-hour mode or 0 - 23 (BCD) in 24-hour mode.

* AMPM: Ante Meridiem Post Meridiem Indicator
This bit is the AM/PM indicator in 12-hour mode.

0 =AM.

1=PM.

All non-significant bits read zero.

Atmel SAMAE [DATASHEET] 315

11157C-ATARM-25-Jul-13

18.6.4 RTC Calendar Register

Name: RTC_CALR

Address: 0x400E186C

Access: Read-write
31 30 29 28 27 26 25 24

| - | - DATE |
23 22 21 20 19 18 17 16

| DAY MONTH |
15 14 13 12 11 10 9 8

| YEAR |
7 6 5 4 3 2 1 0

| _ | CENT |

* CENT: Current Century
The range that can be set is 19 - 20 (gregorian) or 13-14 (persian) (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

* YEAR: Current Year
The range that can be set is 00 - 99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

* MONTH: Current Month
The range that can be setis 01 - 12 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

e DAY: Current Day in Current Week
The range that can be setis 1 - 7 (BCD).
The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

» DATE: Current Day in Current Month
The range that can be set is 01 - 31 (BCD).
The lowest four bits encode the units. The higher bits encode the tens.

All non-significant bits read zero.

Atmel SAMAE [DATASHEET] 316

11157C-ATARM-25-Jul-13

18.6.5 RTC Time Alarm Register

Name: RTC_TIMALR

Address: 0x400E1870

Access: Read-write
31 30 29 28 27 26 25 24
23 22 21 20 19 18 17 16

[HouREN [Ampm | HOUR |
15 14 13 12 11 10 9 8

[miNeN | MIN |
7 6 5 4 3 2 1 0

[secen | SEC |

Note: To change one of the SEC, MIN, HOUR fields, it is recommended to disable the field before changing the value and

then re-enable it after the change has been made. This requires up to 3 accesses to the RTC_TIMALR register. The
first access clears the enable corresponding to the field to change (SECEN,MINEN,HOUREN). If the field is already
cleared, this access is not required. The second access performs the change of the value (SEC, MIN, HOUR). The
third access is required to re-enable the field by writing 1 in SECEN, MINEN, HOUREN fields.

* SEC: Second Alarm

This field is the alarm field corresponding to the BCD-coded second counter.

» SECEN: Second Alarm Enable
0 = The second-matching alarm is disabled.

1 = The second-matching alarm is enabled.

* MIN: Minute Alarm
This field is the alarm field corresponding to the BCD-coded minute counter.

* MINEN: Minute Alarm Enable
0 = The minute-matching alarm is disabled.

1 = The minute-matching alarm is enabled.

* HOUR: Hour Alarm
This field is the alarm field corresponding to the BCD-coded hour counter.

« AMPM: AM/PM Indicator
This field is the alarm field corresponding to the BCD-coded hour counter.

* HOUREN: Hour Alarm Enable
0 = The hour-matching alarm is disabled.

1 = The hour-matching alarm is enabled.

Atmel SAMAE [DATASHEET] 317

11157C-ATARM-25-Jul-13

18.6.6 RTC Calendar Alarm Register

Name: RTC_CALALR

Address: 0x400E1874

Access: Read-write
31 30 29 28 27 26 25 24

[DATEEN | - | DATE |
23 22 21 20 19 18 17 16

[MTHEN | - | - | MONTH |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - I
7 6 5 4 3 2 1 0

I - I - I - I - I - I - I - I - I

Note: To change one of the DATE, MONTH fields, it is recommended to disable the field before changing the value and

then re-enable it after the change has been made. This requires up to 3 accesses to the RTC_CALALR register. The
first access clears the enable corresponding to the field to change (DATEEN,MTHEN). If the field is already cleared,
this access is not required. The second access performs the change of the value (DATE,MONTH). The third access is
required to re-enable the field by writing 1 in DATEEN, MTHEN fields.

« MONTH: Month Alarm

This field is the alarm field corresponding to the BCD-coded month counter.

 MTHEN: Month Alarm Enable
0 = The month-matching alarm is disabled.

1 = The month-matching alarm is enabled.

* DATE: Date Alarm
This field is the alarm field corresponding to the BCD-coded date counter.

» DATEEN: Date Alarm Enable
0 = The date-matching alarm is disabled.

1 = The date-matching alarm is enabled.

Atmel SAM4E [DATASHEET] 318

11157C-ATARM-25-Jul-13

18.6.7 RTC Status Register

Name: RTC_SR

Address: 0x400E1878

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | TERR | cAalev | TiMEv | SEC | AtARM | AckupD |

» ACKUPD: Acknowledge for Update
0 (FREERUN) = Time and calendar registers cannot be updated.
1 (UPDATE) = Time and calendar registers can be updated.

 ALARM: Alarm Flag
0 (NO_ALARMEVENT) = No alarm matching condition occurred.
1 (ALARMEVENT) = An alarm matching condition has occurred.

+ SEC: Second Event
0 (NO_SECEVENT) = No second event has occurred since the last clear.

1 (SECEVENT) = At least one second event has occurred since the last clear.

* TIMEV: Time Event
0 (NO_TIMEVENT) = No time event has occurred since the last clear.
1 (TIMEVENT) = At least one time event has occurred since the last clear.

The time event is selected in the TIMEVSEL field in RTC_CR (Control Register) and can be any one of the following events: min-
ute change, hour change, noon, midnight (day change).

» CALEV: Calendar Event
0 (NO_CALEVENT) = No calendar event has occurred since the last clear.
1 (CALEVENT) = At least one calendar event has occurred since the last clear.

The calendar event is selected in the CALEVSEL field in RTC_CR and can be any one of the following events: week change,
month change and year change.

» TDERR: Time and/or Date Free Running Error
0 (CORRECT) = The internal free running counters are carrying valid values since the last read of RTC_SR.

1 (ERR_TIMEDATE) = The internal free running counters have been corrupted (invalid date or time, non-BCD values) since the
last read and/or they are still invalid.

Atmel SAM4E [DATASHEET] 319

11157C-ATARM-25-Jul-13

18.6.8 RTC Status Clear Command Register

Name: RTC_SCCR

Address: 0x400E187C

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | TDERRCLR | calclR | TiMctR | secclR | ALRCLR | AckcLR |

ACKCLR: Acknowledge Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

* ALRCLR: Alarm Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

SECCLR: Second Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

TIMCLR: Time Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

CALCLR: Calendar Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

TDERRCLR: Time and/or Date Free Running Error Clear
0 = No effect.
1 = Clears corresponding status flag in the Status Register (RTC_SR).

Atmel SAMAE [DATASHEET] 320

11157C-ATARM-25-Jul-13

18.6.9 RTC Interrupt Enable Register

Name: RTC_IER

Address: 0x400E1880

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | TDERREN | cAaleN | TMEN | seceN | AREN | ACkEN |

ACKEN: Acknowledge Update Interrupt Enable
0 = No effect.

1 = The acknowledge for update interrupt is enabled.

* ALREN: Alarm Interrupt Enable
0 = No effect.

1 = The alarm interrupt is enabled.

» SECEN: Second Event Interrupt Enable
0 = No effect.

1 = The second periodic interrupt is enabled.

TIMEN: Time Event Interrupt Enable
0 = No effect.

1 = The selected time event interrupt is enabled.

CALEN: Calendar Event Interrupt Enable
0 = No effect.

1 = The selected calendar event interrupt is enabled.

TDERREN: Time and/or Date Error Interrupt Enable
0 = No effect.

1 = The time and date error interrupt is enabled.

Atmel SAM4E [DATASHEET] 321

11157C-ATARM-25-Jul-13

18.6.10 RTC Interrupt Disable Register

Name: RTC_IDR

Address: 0x400E1884

Access: Write-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | ToERRDIS | caAbis | TmMbis | secbis | ALRDis | Ackpis |

ACKDIS: Acknowledge Update Interrupt Disable
0 = No effect.

1 = The acknowledge for update interrupt is disabled.

» ALRDIS: Alarm Interrupt Disable
0 = No effect.

1 = The alarm interrupt is disabled.

SECDIS: Second Event Interrupt Disable
0 = No effect.

1 = The second periodic interrupt is disabled.

TIMDIS: Time Event Interrupt Disable
0 = No effect.

1 = The selected time event interrupt is disabled.

CALDIS: Calendar Event Interrupt Disable
0 = No effect.

1 = The selected calendar event interrupt is disabled.

TDERRDIS: Time and/or Date Error Interrupt Disable
0 = No effect.
» 1 =The time and date error interrupt is disabled.

Atmel SAMAE [DATASHEET] 322

11157C-ATARM-25-Jul-13

18.6.11 RTC Interrupt Mask Register

Name: RTC_IMR

Address: 0x400E1888

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| _ [— | - | ca | Tm | sec | ar | ack |

ACK: Acknowledge Update Interrupt Mask
0 = The acknowledge for update interrupt is disabled.

1 = The acknowledge for update interrupt is enabled.

e ALR: Alarm Interrupt Mask
0 = The alarm interrupt is disabled.

1 = The alarm interrupt is enabled.

» SEC: Second Event Interrupt Mask
0 = The second periodic interrupt is disabled.

1 = The second periodic interrupt is enabled.

e TIM: Time Event Interrupt Mask
0 = The selected time event interrupt is disabled.

1 = The selected time event interrupt is enabled.

» CAL: Calendar Event Interrupt Mask
0 = The selected calendar event interrupt is disabled.

1 = The selected calendar event interrupt is enabled.

Atmel SAMAE [DATASHEET] 323

11157C-ATARM-25-Jul-13

18.6.12 RTC Valid Entry Register

Name: RTC_VER

Address: 0x400E188C

Access: Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| — | — | - | - [Nnvealalr | nvTiMalr | nveal | nvTive |

* NVTIM: Non-valid Time
0 = No invalid data has been detected in RTC_TIMR (Time Register).

1 = RTC_TIMR has contained invalid data since it was last programmed.

* NVCAL: Non-valid Calendar
0 = No invalid data has been detected in RTC_CALR (Calendar Register).

1 =RTC_CALR has contained invalid data since it was last programmed.

* NVTIMALR: Non-valid Time Alarm
0 = No invalid data has been detected in RTC_TIMALR (Time Alarm Register).

1 = RTC_TIMALR has contained invalid data since it was last programmed.

* NVCALALR: Non-valid Calendar Alarm
0 = No invalid data has been detected in RTC_CALALR (Calendar Alarm Register).

1 =RTC_CALALR has contained invalid data since it was last programmed.

Atmel SAMAE [DATASHEET] 324

11157C-ATARM-25-Jul-13

19. Watchdog Timer (WDT)

19.1 Description

The Watchdog Timer (WDT) can be used to prevent system lock-up if the software becomes trapped in a deadlock. It
features a 12-bit down counter that allows a watchdog period of up to 16 seconds (slow clock around 32 kHz). It can
generate a general reset or a processor reset only. In addition, it can be stopped while the processor is in debug mode or
idle mode.

19.2 Embedded Characteristics
e 12-bit key-protected programmable counter
e Watchdog Clock is independent from Processor Clock
e Provides reset or interrupt signals to the system
e Counter may be stopped while the processor is in debug state or in idle mode

Atmel SAMAE [DATASHEET] 325

11157C-ATARM-25-Jul-13

19.3 Block Diagram

Figure 19-1. Watchdog Timer Block Diagram

write WDT_MR

WDT_CR

| WDRSTT |

reload

WDT_MR

WDV

A

f—
o/

12-bit Down
Counter

reload

Current
Value

read WDT_SR
or

N

WDT_MR

|

y set

| WDUNF |4Z>
reset

:l N\ wdt_fault

(to Reset Controller)

wdt_int

k

reset

Atmel

AN
WDFIEN

WDT_MR

SAMAE [DATASHEET] 326

11157C-ATARM-25-Jul-13

19.4

Functional Description

The Watchdog Timer can be used to prevent system lock-up if the software becomes trapped in a deadlock. It is supplied
with VDDCORE. It restarts with initial values on processor reset.

The Watchdog is built around a 12-bit down counter, which is loaded with the value defined in the field WDV of the Mode
Register (WDT_MR). The Watchdog Timer uses the Slow Clock divided by 128 to establish the maximum Watchdog
period to be 16 seconds (with a typical Slow Clock of 32.768 kHz).

After a Processor Reset, the value of WDV is OxFFF, corresponding to the maximum value of the counter with the
external reset generation enabled (field WDRSTEN at 1 after a Backup Reset). This means that a default Watchdog is
running at reset, i.e., at power-up. The user must either disable it (by setting the WDDIS bit in WDT_MR) if he does not
expect to use it or must reprogram it to meet the maximum Watchdog period the application requires.

If the watchdog is restarted by writing into the WDT_CR register, the WDT_MR register must not be programmed during
a period of time of 3 slow clock periods following the WDT_CR write access. In any case, programming a new value in
the WDT_MR register automatically initiates a restart instruction.

The Watchdog Mode Register (WDT_MR) can be written only once . Only a processor reset resets it. Writing the
WDT_MR register reloads the timer with the newly programmed mode parameters.

In normal operation, the user reloads the Watchdog at regular intervals before the timer underflow occurs, by writing the
Control Register (WDT_CR) with the bit WDRSTT to 1. The Watchdog counter is then immediately reloaded from
WDT_MR and restarted, and the Slow Clock 128 divider is reset and restarted. The WDT_CR register is write-protected.
As a result, writing WDT_CR without the correct hard-coded key has no effect. If an underflow does occur, the “wdt_fault”
signal to the Reset Controller is asserted if the bit WDRSTEN is set in the Mode Register (WDT_MR). Moreover, the bit
WDUNF is set in the Watchdog Status Register (WDT_SR).

To prevent a software deadlock that continuously triggers the Watchdog, the reload of the Watchdog must occur while
the Watchdog counter is within a window between 0 and WDD, WDD is defined in the WatchDog Mode Register
WDT_MR.

Any attempt to restart the Watchdog while the Watchdog counter is between WDV and WDD results in a Watchdog error,
even if the Watchdog is disabled. The bit WDERR is updated in the WDT_SR and the “wdt_fault” signal to the Reset
Controller is asserted.

Note that this feature can be disabled by programming a WDD value greater than or equal to the WDV value. In such a
configuration, restarting the Watchdog Timer is permitted in the whole range [0; WDV] and does not generate an error.
This is the default configuration on reset (the WDD and WDV values are equal).

The status bits WDUNF (Watchdog Underflow) and WDERR (Watchdog Error) trigger an interrupt, provided the bit
WDFIEN is set in the mode register. The signal “wdt_fault” to the reset controller causes a Watchdog reset if the
WDRSTEN bit is set as already explained in the reset controller programmer Datasheet. In that case, the processor and
the Watchdog Timer are reset, and the WDERR and WDUNF flags are reset.

If a reset is generated or if WDT_SR is read, the status bits are reset, the interrupt is cleared, and the “wdt_fault” signal to
the reset controller is deasserted.

Writing the WDT_MR reloads and restarts the down counter.

While the processor is in debug state or in idle mode, the counter may be stopped depending on the value programmed
for the bits WDIDLEHLT and WDDBGHLT in the WDT_MR.

Atmel SAMAE [DATASHEET] 327

11157C-ATARM-25-Jul-13

Figure 19-2. Watchdog Behavior

FFF

Watchdog Error

Watchdog Underflow —

ifWDRSTEN is 1

WDV

Normal behavior

if WDRSTEN is 0

Forbidden
Window

ad

WDD

Permitted
Window

NN

T~

N

N

/ ‘

® Watchdog
Fault

Atmel

WDT_CR =WDRSTT

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

328

19.5 Watchdog Timer (WDT) User Interface

Table 19-1. Register Mapping

Offset Register Name Access Reset
0x00 Control Register WDT_CR Write-only -

0x04 Mode Register WDT_MR Read-write Once Ox3FFF_2FFF
0x08 Status Register WDT_SR Read-only 0x0000_0000

SAMAE [DATASHEET] 329
AtmeL 11157C-ATARM-25-Jul-13

19.5.1 Watchdog Timer Control Register

Name: WDT_CR
Address: 0x400E1850
Access: Write-only
31 30 29 28 27 26 25 24
| KEY |
23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0
I - I - I - I - I - I - I - | WORSTT |
« WDRSTT: Watchdog Restart
0: No effect.
1: Restarts the Watchdog if KEY is written to OxA5.
e KEY: Password.
Value Name Description
OxA5 PASSWD Writing any other value in this field aborts the write operation.

Atmel SAMAE [DATASHEET] 330

11157C-ATARM-25-Jul-13

19.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1854

Access: Read-write Once
31 30 29 28 27 26 25 24

| | | WDIDLEHLT WDDBGHLT WDD |
23 22 21 20 19 18 17 16

| WDD |
15 14 13 12 11 10 9 8

[WDDIS WDRPROC | WDRSTEN WDFIEN WDV |
7 6 5 4 3 2 1 0

| WDV |

Note: The first write access prevents any further modification of the value of this register, read accesses remain possible.

Note: The WDD and WDV values must not be modified within a period of time of 3 slow clock periods following a restart of

the watchdog performed by means of a write access in the WDT_CR register, else the watchdog may trigger an end
of period earlier than expected.

 WDV: Watchdog Counter Value
Defines the value loaded in the 12-bit Watchdog Counter.

* WDFIEN: Watchdog Fault Interrupt Enable
0: A Watchdog fault (underflow or error) has no effect on interrupt.

1: A Watchdog fault (underflow or error) asserts interrupt.

« WDRSTEN: Watchdog Reset Enable
0: A Watchdog fault (underflow or error) has no effect on the resets.

1: A Watchdog fault (underflow or error) triggers a Watchdog reset.

» WDRPROC: Watchdog Reset Processor
0: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a Watchdog fault (underflow or error) activates the processor reset.

 WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, writing WDT_CR with WDRSTT = 1 restarts the timer.
If the Watchdog Timer value is greater than WDD, writing WDT_CR with WDRSTT = 1 causes a Watchdog error.

« WDDBGHLT: Watchdog Debug Halt
0: The Watchdog runs when the processor is in debug state.

1: The Watchdog stops when the processor is in debug state.

Atmel SAM4E [DATASHEET] 331

11157C-ATARM-25-Jul-13

WDIDLEHLT: Watchdog Idle Halt
: The Watchdog runs when the system is in idle mode.

= O

: The Watchdog stops when the system is in idle state.

WDDIS: Watchdog Disable
: Enables the Watchdog Timer.

= O

: Disables the Watchdog Timer.

Atmel SAMAE [DATASHEET] 332

11157C-ATARM-25-Jul-13

19.5.3 Watchdog Timer Status Register

Name: WDT_SR

Address: 0x400E1858

Access Read-only
31 30 29 28 27 26 25 24

I - I - I - I - I - I - I - I - |
23 22 21 20 19 18 17 16

I - I - I - I - I - I - I - I - |
15 14 13 12 11 10 9 8

I - I - I - I - I - I - I - I - |
7 6 5 4 3 2 1 0

| - | - | - | - | - | - | WDERR | WDUNF |

WDUNF: Watchdog Underflow
0: No Watchdog underflow occurred since the last read of WDT_SR.
1: At least one Watchdog underflow occurred since the last read of WDT_SR.

WDERR: Watchdog Error
0: No Watchdog error occurred since the last read of WDT_SR.

1: At least one Watchdog error occurred since the last read of WDT_SR.

Atmel SAMAE [DATASHEET] 333

11157C-ATARM-25-Jul-13

Atmel SAMAE [DATASHEET] 334

11157C-ATARM-25-Jul-13

20. Supply Controller (SUPC)

20.1 Description

The Supply Controller (SUPC) controls the supply voltages of the system and manages the Backup Low Power Mode. In
this mode, the current consumption is reduced to a few microamps for Backup power retention. Exit from this mode is
possible on multiple wake-up sources. The SUPC also generates the Slow Clock by selecting either the Low Power RC
oscillator or the Low Power Crystal oscillator.

20.2 Embedded Characteristics

e Manages the Core Power Supply VDDCORE and the Backup Low Power Mode by Controlling the Embedded
Voltage Regulator

A Supply Monitor Detection on VDDIO or a Brownout Detection on VDDCORE can Trigger a Core Reset

Generates the Slow Clock SLCK, by Selecting Either the 22-42 kHz Low Power RC Oscillator or the 32 kHz Low
Power Crystal Oscillator

e Supports Multiple Wake-up Sources, for Exit from Backup Low Power Mode

Force Wake-up Pin, with Programmable Debouncing

16 Wake-up Inputs (including Tamper inputs), with Programmable Debouncing

Real Time Clock Alarm

Real Time Timer Alarm

Supply Monitor Detection on VDDIO, with Programmable Scan Period and Voltage Threshold

Atmel SAMAE [DATASHEET] 335

11157C-ATARM-25-Jul-13

20.3 Block Diagram

Figure 20-1. Supply Controller Block Diagram

VDDIO

XIN32

XOuT32

VDDIO

NRST

XIN

XOouT

VDDPLL

L]

VDDIN

Note1: FSTTO - FSTT15 are possible Fast Startup Sources, generated by WKUPO-WKUP15 Pins but are not physical

Atmel

SAMAE [DATASHEET]

11157C-ATARM-25-Jul-13

VROFF controlled N BDOUT
Software Controlled
Voltage Regulator e |
-_’ I
1
AFECO (front-end) |——— | AFEIx 1
Supply ADC+DAC 1
sm_on = SMSMPL controlled | Controller AFECO (ront.end) D ADVREF 1
¥ | ADC+DAC [Areox :
Programmable ACC (front-end) :
Supply sm_in
Monitor = DAC (front-end) || pAcx 1
1
< WKUPO - WKUP15 :
General Purpose 1
Backup Registers VDDIO 1
1
PIOA/B/C 1
rtc_alarm
SLCK R1c Input/Output Buffers Al I
— 1
1
_ I—D VDDIO 1
SLCK rtt_alarm 1
RTT | IDDM
|| UsB 1
1
on = XTALSEL 1
vddcore_nreset VDDCORE 1
32 ke XTALSEL I—D‘ -
Oscillator Slow Clock
SLCK bodcore_on =!BODDIS Brownout
Embedded bodcore_in Detector
32kHzRC | &A= I XTALSEL supc_interrupt
Oscillator
<P SRAM [
Backup Power Supply
Peripherals |m—
[—> proc_nreset
vddcore_nreset RIOCE! Cortex-M .
—— Reset —> periph_nreset Processor [P Matrix ¢
Controller .
—> ice_nreset P
‘ , eripheral
Bridge
FSTTO - FSTT15 (Note 1)
> <P Flash frmed
Embedded SLCK
4/8/12 MHz N
RC Main Clock
Oscillator MAINCK Master Clock
Power MCK
3-20MHz Management
XTAL Oscillator Controller
SLCK Wat_chdog
Timer
MAINCK PLLACK
—>| PpLLA Emli)edded
32kHzRC .
Oscillator Reinforced
Safety
Embedded Watchdog
4/8/12 MHz Timer
RC Oscillator Core Power Supply

20.4 Supply Controller Functional Description

20.4.1 Supply Controller Overview

The device can be divided into two power supply areas:

e The Backup VDDIO Power Supply: including the Supply Controller, a part of the Reset Controller, the Slow Clock
switch, the General Purpose Backup Registers, the Supply Monitor and the Clock which includes the Real Time
Timer and the Real Time Clock

e The Core Power Supply: including the other part of the Reset Controller, the Brownout Detector, the Processor, the
SRAM memory, the FLASH memory and the Peripherals

The Supply Controller (SUPC) controls the supply voltage of the core power supply. The SUPC intervenes when the
VDDIO power supply rises (when the system is starting) or when the Backup Low Power Mode is entered.

The SUPC also integrates the Slow Clock generator which is based on a 32 kHz crystal oscillator and an embedded 32
kHz RC oscillator. The Slow Clock defaults to the RC oscillator, but the software can enable the crystal oscillator and
select it as the Slow Clock source.

The Supply Controller and the VDDIO power supply have a reset circuitry based on a zero-power power-on reset cell.
The zero-power power-on reset allows the SUPC to start properly as soon as the VDDIO voltage becomes valid.

At start-up of the system, once the backup voltage VDDIO is valid and the embedded 32 kHz RC oscillator is stabilized,
the SUPC starts up the core by sequentially enabling the internal Voltage Regulator, waiting that the core voltage
VDDCORE is valid, then releasing the reset signal of the core “vddcore_nreset” signal.

Once the system has started, the user can program a supply monitor and/or a brownout detector. If the supply monitor
detects a voltage on VDDIO that is too low, the SUPC can assert the reset signal of the core “vddcore_nreset” signal until
VDDIO is valid. Likewise, if the brownout detector detects a core voltage VDDCORE that is too low, the SUPC