Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

!\ REMINDERS

Product information in this catalog is as of October 2016. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or use of our products.

Please note that TAIYO YUDEN shall not be in any way responsible for any damages and defects in products or equipment incorporating our products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact TAIYO YUDEN for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of our products in actual condition of mounting and operating environment before using our products.
- The products listed in this catalog are intended for use in general electronic equipment (e.g., AV equipment, OA equipment, home electric appliances, office equipment, information and communication equipment), general medical equipment, industrial equipment, and automotive interior applications, etc. Please be sure to contact TAIYO YUDEN for further information before using the products for any equipment which may directly cause loss of human life or bodily injury (e.g., specially controlled medical equipment, transportation equipment including, without limitation, automotive powertrain control system, train control system, and ship control system, traffic signal equipment).

Please do not incorporate our products into any equipment requiring high levels of safety and/or reliability (e.g., aerospace equipment, aviation equipment, nuclear control equipment, undersea equipment, military equipment).

When our products are used even for high safety and/or reliability-required devices or circuits of general electronic equipment, it is strongly recommended to perform a thorough safety evaluation prior to use of our products and to install a protection circuit as necessary.

Please note that unless you obtain prior written consent of TAIYO YUDEN, TAIYO YUDEN shall not be in any way responsible for any damages incurred by you or third parties arising from use of the products listed in this catalog for any equipment requiring inquiry to TAIYO YUDEN or prohibited for use by TAIYO YUDEN as described above.

- Please note that TAIYO YUDEN shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from use of our products. TAIYO YUDEN grants no license for such rights.
- Please note that unless otherwise agreed in writing, the scope of warranty for our products is limited to the delivered our products themselves and TAIYO YUDEN shall not be in any way responsible for any damages resulting from a fault or defect in our products.
- The contents of this catalog are applicable to our products which are purchased from our sales offices or authorized distributors (hereinafter "TAIYO YUDEN's official sales channel"). Please note that the contents of this catalog are not applicable to our products purchased from any seller other than TAIYO YUDEN's official sales channel.
- Caution for Export

Some of our products listed in this catalog may require specific procedures for export according to "U.S. Export Administration Regulations", "Foreign Exchange and Foreign Trade Control Law" of Japan, and other applicable regulations. Should you have any questions on this matter, please contact our sales staff.

MULTILAYER CERAMIC CAPACITORS

■PART NUMBER

J M K	3	1	6	Δ	В	J	1	0	6	М	L	Н	Т	Δ
1 2 3		4		(5)	(6		7		8	9	10	11	12

△=Blank space

End termination

Plated

Soft Termination

Cu Internal Electrodes

High Reliability Application

(])F	≀at	ed	VO	tage

Code	Rated voltage[VDC]
Α	4
J	6.3
L	10
E	16
Т	25
G	35
U	50
Н	100
Q	250
S	630

R Dimension (L X W)

3End termination Code

Κ

J

S

4Dimension(L×	W)	
Туре	Dimensions (L×W)[mm]	EIA(inch)
063	0.6 × 0.3	0201
105	1.0 × 0.5	0402
105	0.52 × 1.0 💥	0204
107	1.6 × 0.8	0603
107	0.8 × 1.6 💥	0306
212	2.0 × 1.25	0805
212	1.25 × 2.0 💥	0508
316	3.2 × 1.6	1206
325	3.2 × 2.5	1210
432	4.5 × 3.2	1812

②Series name

E COTTOC TIGITIC	
Code	Series name
М	Multilayer ceramic capacitor
V	Multilayer ceramic capacitor for high frequency
W	LW reverse type multilayer capacitor

5Dimension tolerance

Code	Type	L[mm]	W[mm]	T[mm]
Δ	ALL	Standard	Standard	Standard
	063	0.6±0.05	0.3 ± 0.05	0.3±0.05
	105	1.0±0.10	0.5±0.10	0.5±0.10
	107	1.6+0.15/-0.05	0.8+0.15/-0.05	0.8+0.15/-0.05
Α	212	2.0+0.15/-0.05	1.25+0.15/-0.05	0.85±0.10
	212	2.0+0.15/-0.05	1.25 + 0.15/ - 0.05	1.25+0.15/-0.05
	316	3.2±0.20	1.6±0.20	1.6±0.20
	325	3.2±0.30	2.5±0.30	2.5±0.30
	105	1.0+0.15/-0.05	0.5+0.15/-0.05	0.5+0.15/-0.05
	107	1.6+0.20/-0	0.8+0.20/-0	0.8+0.20/-0
В	В	201020/ 0	105 1000/ 0	0.85±0.10
212	2.0+0.20/-0	1.25+0.20/-0	1.25+0.20/-0	
	316	3.2±0.30	1.6±0.30	1.6±0.30
	105	1.0+0.20/-0	0.5+0.20/-0	0.5+0.20/-0
С	107	1.6+0.25/-0	0.8+0.25/-0	0.8+0.25/-0
	212	2.0+0.25/-0	1.25+0.25/-0	1.25+0.25/-0
	212	2.0±0.15	1.25±0.15	0.85±0.15
K	316	3.2±0.20	1.6±0.20	1.15±0.20
r	310	3.2 ±0.20	1.0 ±0.20	1.6±0.20
	325	3.2±0.50	2.5±0.30	2.5±0.30

Note: P. 22 Standard external dimensions

Δ= Blank space

©Temperature characteristics code

■High dielectric type

Code		cable dard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code
BJ	EIA	X5R	−55 ~ + 85	25	±15%	±10%	K
	LIA	Yak	-55°° + 65	25	±13%	±20%	М
C6	EIA	X6S	-55 ~ +105	25	±22%	±10%	K
	C6 EIA X6S	702	-55.9 + 105	25	±22 70	±20%	М
В7	EIA	X7R	-55 ~ +125	25	±15%	±10%	K
Б/	LIA	A/K	-55.4 + 125	25	±13%	±20%	М
C7	EIA	X7S	-55 ~ +125	25	±22%	±10%	K
	LIA	A/3	-55° + 125	20	1 22 %	±20%	М
D7	EIA	X7T	-55 ~ +125	25	+22%/-33%	±10%	K
	EIA	^/1	_55.3 + 125	20	+22%/ -33%	±20%	М

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) .

■Temperature compensating type

<u></u>	Tomporated o componitating type								
Code		cable idard	Temperature range[°C]	Ref. Temp.[°C]	Capacitance change	Capacitance tolerance	Tolerance code		
						±0.1pF	В		
	JIS	CG		20		±0.25pF	С		
CG			-55 ~ +125		0±30ppm/°C	±0.5pF	D		
CG			-55.4 + 125		о±зоррпі/ С	±1pF	F		
	EIA	C0G		25		±2%	G		
						±5%	J		

7Nominal capacitance

Trioninal capac	itanoc
Code (example)	Nominal cpacitance
0R5	0.5pF
010	1pF
100	10pF
101	100pF
102	1,000pF
103	0.01 <i>μ</i> F
104	0.1 μ F
105	1.0 <i>μ</i> F
106	10 μ F
107	100 μ F

Note : R=Decimal point

8 Capacitance tolerance

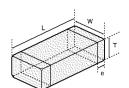
Code	Capacitance tolerance
В	±0.1pF
С	±0.25pF
D	±0.5pF
G	±2%
J	±5%
K	±10%
М	±20%

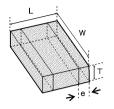
Thickness

Code	Thickness[mm]
Р	0.3
Т	0.3
V	0.5
С	0.7(107type or more)
Α	0.8
D	0.85(212type or more)
F	1.15
G	1.25
Н	1.5
L	1.6
N	1.9
М	2.5

10Special code

Code	Special code
Н	MLCC for Industrial and Automotive


①Packaging


Code	Packaging
F	ϕ 178mm Taping (2mm pitch)
R	ϕ 178mm Embossed Taping (4mm pitch)
Т	ϕ 178mm Taping (4mm pitch)
	ϕ 178mm Taping (4mm pitch, 1000 pcs/reel)
P	325 type(Thickness code M)

①Internal code

9	
Code	Internal code
Δ	Standard

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

 \divideontimes LW reverse type

Type(EIA)			nsion [mm] (inch)		
· ypc(Liv()	L	W	T	*1	е
□MK063(0201)	0.6±0.03	0.3±0.03	0.3±0.03	Т	0.15±0.05
	(0.024±0.001)	(0.012±0.001)	(0.012±0.001)		(0.006±0.002)
□MK105(0402)	1.0±0.05	0.5±0.05	0.5±0.05	V	0.25±0.10
□WIK103(0402)	(0.039 ± 0.002)	(0.020 ± 0.002)	(0.020 ± 0.002)	V	(0.010 ± 0.004)
□WK105(0204)※	0.52±0.05	1.0±0.05	0.3±0.05	Р	0.18±0.08
□WK103(0204);X	(0.020 ± 0.002)	(0.039 ± 0.002)	(0.012 ± 0.002)	P	(0.007 ± 0.003)
JMK107 (0602)	1.6±0.10	0.8±0.10	0.8±0.10		0.35±0.25
□MK107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Α	(0.014 ± 0.010)
TM 1407 (0000)	1.6±0.10	0.8±0.10	0.8±0.10		0.35+0.3/-0.25
□MJ107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Α	(0.014 + 0.012 / -0.010)
T)/0107/0000)	1.6±0.10	0.8±0.10	0.7±0.10		0.35±0.25
□VS107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.028 ± 0.004)	С	(0.014±0.010)
TMB407/0000)	1.6±0.10	0.8±0.10	0.8±0.10		0.1~0.6
□MR107(0603)	(0.063 ± 0.004)	(0.031 ± 0.004)	(0.031 ± 0.004)	Α	(0.004~0.024)
	0.8±0.10	1.6±0.10	0.5±0.05		0.25±0.15
⊐WK107(0306)※	(0.031 ± 0.004)	(0.063 ± 0.004)	(0.020 ± 0.002)	V	(0.010 ± 0.006)
			0.85±0.10		
	2.0±0.10	1.25±0.10	(0.033±0.004)	D	0.5±0.25
□MK212(0805)	(0.079±0.004)	(0.049 ± 0.004)	1.25±0.10	1	(0.020±0.010)
	(0.073 ± 0.004)	(0.043 ± 0.004)	(0.049 ± 0.004)	G	(0.020 ± 0.010)
			0.85±0.10		
	0.04.040	1.05.1.0.10	(0.033±0.004)	D	051005/ 005
□MJ212(0805)	2.0±0.10	1.25±0.10			0.5+0.35/-0.25 (0.020+0.014/-0.010)
	(0.079 ± 0.004)	(0.049 ± 0.004)	1.25±0.10	G	(0.020+0.014/-0.010)
			(0.049±0.004)		
□VS212(0805)	2.0±0.10	1.25±0.10	0.85±0.10	D	0.5±0.25
_ , ,	(0.079±0.004)	(0.049±0.004)	(0.033±0.004)		(0.020±0.010)
□MR212(0805)	2.0±0.10	1.25±0.10	1.25±0.10	G	0.25~0.75
	(0.079±0.004)	(0.049±0.004)	(0.049±0.004)		(0.010~0.029)
□WK212(0508)※	1.25±0.15	2.0±0.15	0.85±0.10	D	0.3±0.2
	(0.049 ± 0.006)	(0.079±0.006)	(0.033±0.004)		(0.012±0.008)
			1.15±0.10	F	
JMK216 (1206)	3.2±0.15	1.6±0.15	(0.045 ± 0.004)	'	0.5 + 0.35 / -0.25
⊐MK316(1206)	(0.126 ± 0.006)	(0.063 ± 0.006)	1.6±0.20		(0.020+0.014/-0.010)
			(0.063 ± 0.008)	L	
			1.15±0.10		
	224015	16+015	(0.045±0.004)	F	06104/ 03
□MJ316(1206)	3.2±0.15	1.6±0.15			0.6+0.4/-0.3
	(0.126±0.006)	(0.063±0.006)	1.6±0.20	L	(0.024+0.016/-0.012)
			(0.063±0.008)	_	
□MR316(1206)	3.2±0.15	1.6±0.15	1.6±0.20	L	0.25~0.85
	(0.126±0.006)	(0.063±0.006)	(0.063 ± 0.008)		(0.010~0.033)
			1.15±0.10	F	
			(0.045 ± 0.004)		
			1.5±0.10	ы	
□MK325(1210)	3.2±0.30	2.5±0.20	(0.059 ± 0.004)	Н	0.6±0.3
TIMILOSSO (ISIO)	(0.126 ± 0.012)	(0.098 ± 0.008)	1.9±0.20	NI	(0.024±0.012)
			(0.075 ± 0.008)	N	
			2.5±0.20		1
			(0.098 ± 0.008)	М	
			1.9±0.20		
	3.2±0.30	2.5±0.20	(0.075 ± 0.008)	N	0.6+0.4/-0.3
□MJ325(1210)	(0.126±0.012)	(0.098±0.008)	2.5±0.20		(0.024+0.016/-0.012)
	(/	(11111111111111111111111111111111111111	(0.098±0.008)	М	(
			1.9±0.20		
□MR325(1210)	3.2±0.30	2.5±0.20	(0.075±0.008)	N	0.3~0.9
	(0.126±0.012)	(0.098±0.008)	2.5±0.20	 	(0.012~0.035)
	(U.120±U.U12)	(0.030 ± 0.000)	(0.098 ± 0.008)	М	(0.0120.030)
	454040	2 2 4 2 22	+ '	 	00100
□MK432(1812)	4.5±0.40 (0.177±0.016)	3.2±0.30	2.5±0.20	М	0.9±0.6
		(0.126 ± 0.012)	(0.098 ± 0.008)		(0.035 ± 0.024)

Note: X. LW reverse type, *1.Thickness code

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) .

STANDARD QUANTITY

т	EIA (inch)	Dime	nsion	Standard qu	uantity[pcs]
Type	EIA (inch)	[mm]	Code	Paper tape	Embossed tape
063	0201	0.3	Т	15000	_
105	0402	0.5	V	10000	
105	0204 ※	0.30	Р	10000	_
		0.7	С	4000	
		0.8	Α	4000	_
107	0603	0.8	А	3000 (Soft Termination)	_
		0.8	А	_	3000 (Soft Termination)
	0306 ※	0.50	V	_	4000
		0.85	D	4000	_
	0805	1.25	G	_	3000
212	0805	1.25	G	_	2000 (Soft Termination
	0508 ※	0.85	D	4000	-
010	1000	1.15	F	_	3000
316	1206	1.6	L	_	2000
		1.15	F		
205	1010	1.5	Н	_	2000
325	1210	1.9	N		
		2.5	М	_	500(T), 1000(P)
432	1812	2.5	М	-	500

Note : ※.LW Reverse type(□WK)

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/).

[Temperature Characteristic B7 : X7R] 1.5mm thickness(H)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact	erature eristics	Capacitance [F]	Capacitance tolerance [%]	tan δ [%]	HTLT Rated voltage x %	Thickness*3 [mm]	Note
UMK325 B7105∏HHT		50		X7R	1 μ	±10, ±20	3.5	200	1.5±0.10	*1 ,*2

Multilayer Ceramic Capacitors (Temperature compensating type)

●063TYPE (Dimension:0.6 × 0.3mm JIS:0603 EIA:0201)

[Temperature Characteristic CG: CG/C0G] 0.3mm thickness(T)

Part number 1	Part number 2	Rated voltage [V]	Tempe charact	erature eristics	Capacitance [F]	Capacitance tolerance	Q [at 1MHz] (Min)	HTLT Rated voltage x %	Thickness*3 [mm]	Note
UMK063 CG0R5CTHF			CG	C0G	0.5 p	± 0.25pF	410	200	0.3 ± 0.03	*1 ,*2
UMK063 CG010CTHF			CG	COG	1 p	± 0.25pF	420	200	0.3 ± 0.03	*1 ,*2
UMK063 CG1R5CTHF			CG	COG	1.5 p	± 0.25pF	430	200	0.3 ± 0.03	*1 ,*2
UMK063 CG020CTHF			CG	C0G	2 p	± 0.25pF	440	200	0.3 ± 0.03	*1 ,*2
UMK063 CG030CTHF			CG	C0G	3 p	± 0.25pF	460	200	0.3 ± 0.03	*1 ,*2
UMK063 CG040CTHF			CG	COG	4 p	± 0.25pF	480	200	0.3 ± 0.03	*1 ,*2
UMK063 CG050CTHF			CG	C0G	5 p	± 0.25pF	500	200	0.3±0.03	*1 ,*2
UMK063 CG060DTHF			CG	C0G	6 p	± 0.5pF	520	200	0.3±0.03	*1 ,*2
UMK063 CG070DTHF			CG	C0G	7 p	± 0.5pF	540	200	0.3 ± 0.03	*1 ,*2
UMK063 CG080DTHF			CG	C0G	8 p	± 0.5pF	560	200	0.3 ± 0.03	*1 ,*2
UMK063 CG090DTHF			CG	C0G	9 р	± 0.5pF	580	200	0.3 ± 0.03	*1 ,*2
UMK063 CG100DTHF		50	CG	C0G	10 p	± 0.5pF	600	200	0.3 ± 0.03	*1 ,*2
UMK063 CG120JTHF		30	CG	C0G	12 p	± 5 %	640	200	0.3 ± 0.03	*1 ,*2
UMK063 CG150JTHF			CG	C0G	15 p	± 5 %	700	200	0.3 ± 0.03	*1 ,*2
UMK063 CG180JTHF			CG	C0G	18 p	± 5 %	760	200	0.3 ± 0.03	*1 ,*2
UMK063 CG220JTHF			CG	C0G	22 p	± 5 %	840	200	0.3 ± 0.03	*1 ,*2
UMK063 CG270JTHF			CG	C0G	27 p	± 5 %	940	200	0.3 ± 0.03	*1 ,*2
UMK063 CG330JTHF			CG	C0G	33 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG390JTHF			CG	C0G	39 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG470JTHF			CG	C0G	47 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG560JTHF			CG	C0G	56 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG680JTHF			CG	C0G	68 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG820JTHF			CG	C0G	82 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
UMK063 CG101JTHF			CG	C0G	100 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
TMK063 CG121JTHF			CG	C0G	120 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
TMK063 CG151JTHF		25	CG	C0G	150 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
TMK063 CG181JTHF		20	CG	C0G	180 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2
TMK063 CG221JTHF			CG	C0G	220 p	± 5 %	1000	200	0.3 ± 0.03	*1 ,*2

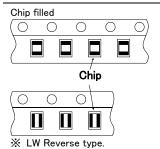
●105TYPE (Dimension:1.0×0.5mm JIS:1005 EIA:0402)

Part number 1			Capacitance	Q [at 1MHz]	HTLT	Thickness*3 [mm]	Note			
Fart Humber 1	Fart number 2	Nated Voltage [V]	charact	eristics	[F]	tolerance	(Min)	Rated voltage x %	Inickness [mm]	Note
UMK105 CG0R5CVHF			CG	COG	0.5 p	±0.25pF	410	200	0.5 ± 0.05	*1 ,*2
UMK105 CG010CVHF			CG	C0G	1 p	±0.25pF	420	200	0.5 ± 0.05	*1 ,*2
UMK105 CG1R5CVHF			CG	COG	1.5 p	±0.25pF	430	200	0.5 ± 0.05	*1 ,*2
UMK105 CG020CVHF			CG	C0G	2 p	±0.25pF	440	200	0.5 ± 0.05	*1 ,*2
UMK105 CG030CVHF			CG	C0G	3 p	±0.25pF	460	200	0.5 ± 0.05	*1 ,*2
UMK105 CG040CVHF			CG	C0G	4 p	±0.25pF	480	200	0.5 ± 0.05	*1 ,*2
UMK105 CG050CVHF			CG	C0G	5 p	±0.25pF	500	200	0.5 ± 0.05	*1 ,*2
UMK105 CG060DVHF			CG	C0G	6 p	±0.5pF	520	200	0.5 ± 0.05	*1 ,*2
UMK105 CG070DVHF			CG	C0G	7 p	±0.5pF	540	200	0.5 ± 0.05	*1 ,*2
UMK105 CG080DVHF			CG	C0G	8 p	±0.5pF	560	200	0.5 ± 0.05	*1 ,*2
UMK105 CG090DVHF			CG	C0G	9 р	±0.5pF	580	200	0.5 ± 0.05	*1 ,*2
UMK105 CG100DVHF			CG	C0G	10 p	±0.5pF	600	200	0.5 ± 0.05	*1 ,*2
UMK105 CG120JVHF			CG	C0G	12 p	±5%	640	200	0.5 ± 0.05	*1 ,*2
UMK105 CG150JVHF			CG	C0G	15 p	±5%	700	200	0.5 ± 0.05	*1 ,*2
UMK105 CG180JVHF			CG	C0G	18 p	±5%	760	200	0.5 ± 0.05	*1 ,*2
UMK105 CG220JVHF			CG	C0G	22 p	±5%	840	200	0.5 ± 0.05	*1 ,*2
UMK105 CG270JVHF			CG	C0G	27 p	±5%	940	200	0.5 ± 0.05	*1 ,*2
UMK105 CG330JVHF			CG	C0G	33 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG390JVHF			CG	COG	39 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG470JVHF			CG	COG	47 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG560JVHF		50	CG	COG	56 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG680JVHF			CG	COG	68 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG820JVHF			CG	COG	82 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG101JVHF			CG	COG	100 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG121JVHF			CG	COG	120 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG151JVHF			CG	COG	150 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG181JVHF			CG	C0G	180 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG221JVHF			CG	C0G	220 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG271JVHF			CG	C0G	270 р	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG331JVHF			CG	C0G	330 р	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG361JVHF			CG	C0G	360 р	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG391JVHF		_ [CG	C0G	390 р	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG431JVHF		_ [CG	C0G	430 p	±5%	1000	200	0.5±0.05	*1 ,*2
JMK105 CG471JVHF		_ [CG	C0G	470 p	±5%	1000	200	0.5±0.05	*1 ,*2
JMK105 CG511JVHF		_ [CG	C0G	510 р	±5%	1000	200	0.5±0.05	*1 ,*2
JMK105 CG561JVHF		_ [CG	C0G	560 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG621JVHF		_ [CG	C0G	620 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG681JVHF			CG	C0G	680 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG751JVHF			CG	C0G	750 p	±5%	1000	200	0.5±0.05	*1 ,*2
UMK105 CG821JVHF			CG	C0G	820 p	±5%	1000	200	0.5 ± 0.05	*1 ,*2
UMK105 CG102JVHF		l [CG	C0G	1000 p	±5%	1000	200	0.5±0.05	*1 ,*2

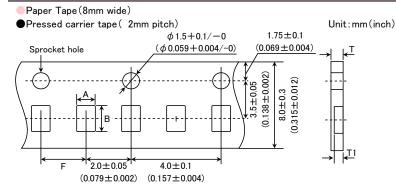
[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our website (http://www.ty-top.com/) .

Multilayer Ceramic Capacitors

■PACKAGING

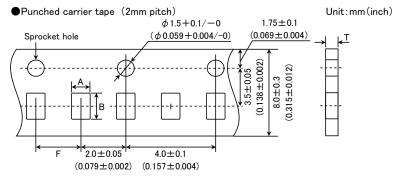

1 Minimum Quantity

Taped package	Thick		Chan dand	quantity [pcs]
Type(EIA)	mm	code	Paper tape	Embossed tape
□MK021(008004)	0.125	K	— Faper tape	50000
□MK042(01005)	0.2	C. D		00000
□VS042(01005)	0.2	C	┥ -	40000
□MK063(0201)	0.3	P,T	15000	_
□WK105(0204) ※	0.3	P	10000	_
	0.13	Н	_	20000
	0.18	E	_	15000
□MK105(0402)	0.2	C	20000	_
	0.3	P	15000	_
	0.5	V	10000	_
□VK105(0402)	0.5	W	10000	_
□MK107(0603)	0.45	K	4000	_
□WK107(0306) ※	0.5	V	_	4000
□MR107(0603)	0.8	Α	4000	_
□VS107(0603)	0.7	С	4000	_
□MJ107(0603)	0.8	Α	3000	3000
□MK212(0805)	0.45	K	4000	
□WK212(0508) ※	0.85	D	4000	_
□MR212(0805)	1.25	G	_	3000
□VS212(0805)	0.85	D	4000	_
	0.85	D	4000	_
□MJ212(0805)	1.25	G	_	2000
	0.85	D	4000	_
□MK316(1206)	1.15	F	_	3000
□MR316(1206)	1.6	L	_	2000
TM (04.0(4.000)	1.15	F	_	3000
□MJ316(1206)	1.6	L	_	2000
	0.85	D		
	1.15	F		0000
□MK325(1210) -	1.9	N	7 -	2000
□MR325(1210)	2.0max.	Υ		
	2.5	М	_	1000
□M (225/1210)	1.9	N	_	2000
□MJ325(1210)	2.5	М	_	500(T), 1000(P)
□MK432(1812)	2.5	М	_	500

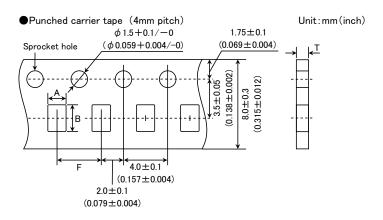

Note: 💥 LW Reverse type.

**No bottom tape for pressed carrier tape Card board carrier tape Top tape Base tape Sprocket hole Chip cavity Base tape Chip cavity

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


3 Representative taping dimensions

Type(EIA)	Chip	Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	Α	В	F	Т	T1	
☐MK063(0201)	0.37	0.67		0.45max.	0.42max.	
□WK105(0204) ※			0.0 1.005	2.0±0.05	0.45max.	0.42max.
□MK105(0402) (*1 C)	0.65	1.15	2.0 ± 0.03	0.4max.	0.3max.	
□MK105(0402) (*1 P)				0.45max.	0.42max.	


Note *1 Thickness, C:0.2mm ,P:0.3mm. * LW Reverse type.

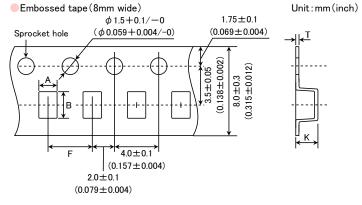
Unit:mm

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
□MK105 (0402) □VK105 (0402)	0.65	1.15	2.0±0.05	0.8max.

Unit:mm

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness
Type(EIA)	Α	В	F	Т
□MK107(0603)				
□WK107(0306) ※	1.0	1.8		1.1max.
☐MR107(0603)			40101	
□MK212(0805)	1.65	0.4	4.0±0.1	
□WK212(0508) ※	1.00	2.4		1.1max.
□MK316(1206)	2.0	3.6		

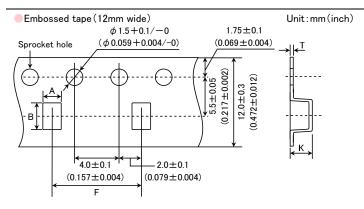

Note: Taping size might be different depending on the size of the product. 💥 LW Reverse type.

Unit:mm

Embossed tape (4mm wide)			Unit:mm(inch)
	ϕ 0.8 \pm 0.04	0.9 ± 0.05	
Sprocket hole	$(\phi 0.031 \pm 0.002)$	(0.035 ± 0.002)	حااد [⊤]
F 1.0±0.02 (0.039±0.001) (0	20±0.04 079±0.002)	1.8±0.02 (0.071±0.001) 4.0±0.05 (0.157±0.002)	K

Type(EIA)	Chip (Cavity	Insertion Pitch	Tape Thickness		
Type(EIA)	Α	В	F	K	Т	
☐MK021(008004)	0.135	0.27				
☐MK042(01005)	0.23	0.23 0.43	1.0±0.02	0.5max.	0.25max.	
□VS042(01005)	0.23	0.43				

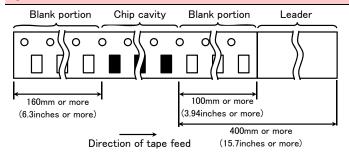
Unit:mm

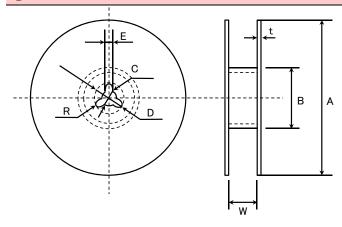

Type(EIA)	Chip (Chip Cavity		Tape Thickness		
Type(EIA)	Α	В	F	K	Т	
☐MK105(0402)	0.6	1.1	2.0±0.1	0.6max	0.2±0.1	
□WK107(0306) ※	1.0	1.8		1.3max.	0.25±0.1	
□MK212(0805) □MR212(0805)	1.65	2.4				
☐MK316(1206) ☐MR316(1206)	2.0	3.6	4.0±0.1	3.4max.	0.6max.	
☐MK325(1210) ☐MR325(1210)	2.8	3.6				

Note:

LW Reverse type.

Unit:mm

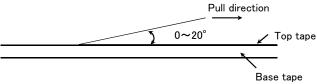

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).


Turne/FIA)	Chip (Cavity	Insertion Pitch	Tape Thickness	
Type(EIA)	Α	В	F	K	Т
☐MK325(1210)	3.1	4.0	8.0±0.1	4.0max.	0.6max.
☐MK432(1812)	3.7	4.9	8.0±0.1	4.0max.	0.6max.

Unit:mm

4 Trailer and Leader

5Reel size


Α	В	С	D	E	R
ϕ 178 ± 2.0	<i>ф</i> 50min.	ϕ 13.0 \pm 0.2	ϕ 21.0 ± 0.8	2.0±0.5	1.0

	Т	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5

Unit:mm

6Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Multilayer Ceramic Capacitors

■ RELIABILITY DATA

Test

Methods and

Remarks

Applied voltage

Charge/discharge current

Duration

NELIABILIT						
1.Operating Te	mperature Range					
	Temperature	Standard		_		
	Compensating(Class1)	55 to +	-125°C			
		Compensating(Class1) High Frequency Type				
				Specification	Temperature	Range
				В	-25 to +	
Specified			BJ	X5R	-55 to +	
/alue			B7	X7R	-55 to +	
/ alue	High Permittivity (Class2)	C6	X6S	-55 to +	
			C7	X7S	-55 to +	
			D7	X7T	-55 to +	
			LD(※)	X5R	-55 to +	
			Note: 🔆	LD Low distortion	high value multilaye	ceramic cap
Storage Con	ditions					
	Temperature	Standard				
	Compensating(Class1)	High Frequency Type	−55 to +	-125°C		
	, 3. 7	Tagit i requestey Type		0 :5 ::	T .	D
			Specification	Temperature		
			BJ	B	-25 to +	
Specified				X5R X7R	-55 to +	
Value H	High Permittivity (Class?)		B7	1	-55 to +	
	High Permittivity (Class2	C6 C7	X6S	-55 to +		
		D7	X7S X7T	-55 to +		
			LD(※)	X5R	-55 to +	
					high value multilayer	
			11000. /	KED LOW distortion	Trigit value mattiayer	ocianilo ou
D I IVI						
Rated Voltag		0	F0\/D0 ==	T) (D, O		
Specified	Temperature	Standard	50VDC, 25	OANG		
pecined alue	Compensating(Class1)	High Frequency Type	50VDC, 25	SVDC		
	High Permittivity (Class2)	50VDC, 35	5VDC, 25VDC, 16V	DC, 10VDC, 6.3VDC,	4VDC, 2.5VI
Withstanding	Voltage (Between termina	ls)				
	Temperature	Standard				
Specified	Compensating(Class1)	High Frequency Type	No breakd	own or damage		
/alue	High Permittivity (Class2		1			
			ass 1		Class 2	
Test			volta × 3		d voltage × 2.5	
Methods and	Duration	1.300		1 to 5 sec.	<u> </u>	
Remarks	Charge/discharge current			50mA max.		
. Insulation Re	esistance					
		Standard				
0 '5 '	Temperature Compensating(Class1)		10000 MΩ	? min.		
Specified	Compensating (Class I)	High Frequency Type				
/alue	High Permittivity (Class2) Note 1		μ F : 10000 M Ω m	in.	
	(Sidooz	, :,000 .	C>0.047 µ	C $>$ 0.047 μ F : 500M $\Omega \cdot \mu$ F		

: Rated voltage

: 60±5 sec.

: 50mA max.

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

6. Capacitance	(Tolerance)					
Specified Compensating (Class1) Value High Permittivity (Class2)	· ·	Standard	C□ U□ SL		: ±0.25pF : ±0.5pF : ±5% or ±10%	
	High Frequency Type	СН	0.3pF≦C≦2pF C>2pF	: ±0.1pF : ±5%		
	High Permittivity (Class2)	High Permittivity (Class2)			±10% or ±20% h value multilayer cerami	c capacitor
			Cla	ss 1	Class 2	
- .		Standa	rd	High Frequency Type	C≦10 μ F	C>10 μ F
Test	Preconditioning		None		Thermal treatment (a	at 150°C for 1hr) Note 2
Methods and Remarks	Measuring frequency		1MHz	z±10%	1kHz±10%	120±10Hz
Remarks	Measuring voltage Note		0.5 to	5Vrms	1±0.2Vrms	0.5±0.1rms
	Bias application		one			

Specified Value	Temperature Compensating(Class1)	Standard		C < 30pF : Q ≥ 400 + 20C C ≥ 30pF : Q ≥ 1000 (C: Nominal capacitance)				
	Compensating (Glass I)	High Frequency Type		Refer	to detailed specification			
	High Permittivity (Class2) Note 1			BJ, B7, C6, C7, D7:2.5% max.				
			Class 1		Class 2			
			Standard		High Frequency Type	C≦10 <i>μ</i> F	C>10 μ F	
	Preconditioning		None		Thermal treatment (at 150°C for 1hr) Note 2			
Test	Measuring frequey		1MHz±10%		1GHz	1kHz±10%	120±10Hz	
Methods and	Measuring voltage Note 1		0.5 to 5Vrms		1±0.2Vrms	0.5±0.1Vrms		
Remarks	Bias application	Bias application			None			
	High Frequency Type							
	Measuring equipment	: HP	4291A					
	Measuring jig : HP16192A							

8. Temperature	e Characteristic (Without vo	ltage application)						
			Tem	C] Tole	erance [ppm/°C]			
		Standard	C□:	0	CG,CH, CJ, (СК	G: ±30 H: ±60	
	Temperature Compensating(Class1)		U□ :	— 750	UJ, UK		J: ±120 K: ±250	
			SL :	+350 to −100	00			
		High Frequency Type	Temperature Characteristic [p		cteristic [ppm/°	C] Tole	erance [ppm/°C]	
			C□:	0	CH		H: ±60	
Specified				Specification	Capacitance	Reference	Tomporatura Panga	
Value				Specification	change	temperature	Temperature Range	
			BJ	В	±10%	20°C	−25 to +85°C	
			ВО	X5R	±15%	25°C	−55 to +85°C	
	High Downittivity (Class)	1	B7	X7R	±15%	25°C	−55 to +125°C	
	High Permittivity (Class2)	,	C6	X6S	±22%	25°C	−55 to +105°C	
			C7	X7S	±22%	25°C	−55 to +125°C	
			D7	X7S	+22/-33%	25°C	−55 to +125°C	
				X5R	±15%	25°C	-55 to +85°C	
		Note:	LD Low disto	ortion high value	multilayer ceran	nic capacitor		

Class 1

Capacitance at 20° C and 85° C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

$$\frac{(C_{85}-C_{20})}{C_{20}\times\Delta T}\times 10^{6}(ppm/^{\circ}C)$$
 $\Delta T=65$

Test Methods and Remarks

Class 2

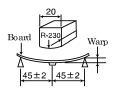
Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	В	X5R, X7R, X6S, X7S, X7T			
1	Minimum operating temperature				
2	20°C	25°C			
3	Maximum operating temperature				

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

 $\frac{(C-C_2)}{C_2}$ × 100(%)

C : Capacitance in Step 1 or Step 3


C2 : Capacitance in Step 2

9. Deflection : No abnormality Appearance Standard Capacitance change : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. Temperature Compensating (Class 1)Appearance : No abnormality Specified High Frequency Type : Within±0.5 pF Cpaitance change Value Appearance : No abnormality Capacitance change : Within ±12.5%(BJ, B7, C6, C7, D7, LD(*)) High Permittivity (Class2)

Test Methods and Remarks

	Multilayer Ceramic Capacitors				
	042, 063, ^{※1} 105 Type	The other types			
Board	Glass epoxy-resin substrate				
Thickness	0.8mm	1.6mm			
Warp	1mm (Soft Termination type:3mm)				
Duration	10 sec.				

Note: XLD Low distortion high value multilayer ceramic capacitor

(Unit: mm)

Capacitance measurement shall be conducted with the board bent

10. Body Stren	10. Body Strength					
	Temperature	Standard	-			
Specified Value	Compensating(Class1)	High Frequency Type	No mechanical damage.			
Value	High Permittivity (Class2))	_			
Test Methods and Remarks	High Frequency Type Applied force : 5N Duration : 10 sec.	Pres ← A →	R0.5 Pressing Jig Chip O.6A A			

11. Adhesive St	11. Adhesive Strength of Terminal Electrodes						
0 15 1	Temperature	Standard					
Specified Value	Compensating(Class1)	High Frequency Type	No terminal separati	No terminal separation or its indication.			
	High Permittivity (Class	2)					
		Multilayer Cerami	c Capacitors	Hooked jig			
Test		042, 063 Type	105 Type or more				
Methods and	Applied force	2N	5N	R=05 Doard			
Remarks	Duration	30±5 s	ec.	Chin			
				Chip			
	Duration	30±5 s	ec.	←Chip Chip			

12. Solderability	/				
	Temperature	Standard			
Specified Value	Compensating(Class1)	High Frequency Type	At least 95% of terminal electrode is covered by		by new solder.
V dide	High Permittivity (Class2)				
T4	Eutectic s		older	Lead-free solder	
Test Methods and	Solder type	H60A or H	63A	Sn-3.0Ag-0.5Cu	
Remarks	Solder temperature	230±5°	С	245±3℃	
Remarks	Duration		4±1 sec.		

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

13. Resistance	to Soldering				
Specified Value	Temperature	Standard	Appearance Capacitance change Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% or ±0 : Initial value : Initial value (between terminals)	0.25pF, whichever is larger. : No abnormality
	Compensating(Class1)	High Frequency Type	Appearance Capacitancecange Q Insulation resistance Withstanding voltage	: No abnormality : Within ±2.5% : Initial value : Initial value (between terminals)	: No abnormality
	High Permittivity (Class2) Note 1		Appearance Capactace change Dissipation factor Insulation resistance Withstanding voltage Note: ※LD Low distor	: Initial value : Initial value (between terminals)	•
		lss 1			
		042, 063 Type	1	05 Type	
	Preconditioning		None		
	Preheating	150°C, 1 to 2 min.		00°C, 2 to 5 min. 00°C, 2 to 5 min.	
	Solder temp.		270±5°C		
	Duration		3 ± 0.5 sec.		
Гest Methods and	Recovery	6 to 24 hrs	s (Standard condition) N	loe 5	
Remarks				Class 2	
		042、063 Type	105, 1	07, 212 Type	316, 325 Type
	Preconditioning		Thermal treatment	(at 150°C for 1 hr) No	ote 2
	Preheating	150°C, 1 to 2 min.		00°C, 2 to 5 min. 00°C, 2 to 5 min.	80 to 100°C, 5 to 10 min. 150 to 200°C, 5 to 10 min.
	Solder temp.			.70±5°C	
	Duration		3:	±0.5 sec.	
	Recovery		24±2 hrs (Star	ndard condition)Note	5

14. Temperatur	re Cycle (Thermal Shock)					
	Temperature	Standard		Capacitance change : V Q : In Insulation resistance : In	lo abnormality Vithin ±2.5% or ±0.25 nitial value nitial value etween terminals): N	pF, whichever is larger. o abnormality
Specified Value	Compensating(Class1)	High Frequency Type		Appearance : No abnormality Capacitance change : Within ±0.25pF Q : Initial value Insulation resistance : Initial value Withstanding voltage (between terminals) : No abnormality		o abnormality
	High Permittivity(Class2) Note 1			Capacitance change : W Dissipation factor : Ir Insulation resistance : Ir	o abnormality /ithin ±7.5% (BJ, B7, nitial value nitial value etween terminals) : No high value multilayer c	o abnormality
			C	Class 1		Class 2
	Preconditioning			None	Thermal treatment (at 150°C for 1 hr) Note 2	
Test Methods and Remarks	1 cycle	Step 1 2 3 4		Temperatur Minimum operating Normal temp Maximum operating Normal temp	temperature erature temperature	Time(min.) 30±3 2 to 3 30±3 2 to 3
	Number of cycles			5 1	times	
	Recovery	6 to 24 hrs	S (Stan	dard condition)Note 5	24±2 hrs (S	Standard condition)Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

15. Humidity (Steady State)				
	Temperature Compensating(Class1	Standard)	Appearance Capacitance change Q Insulation resistance	: No abnormality : Within $\pm 5\%$ or ± 0.5 pF, whichever is larger. : $C < 10$ pF : $Q \ge 200 + 10$ C $10 \le C < 30$ pF : $Q \ge 275 + 2.5$ C $C \ge 30$ pF: $Q \ge 350$ (C: Nominal capacitance) : $1000 \ M\Omega$ min.	
Specified Value		High Frequency Type	Appearance Capacitance change Insulation resistance	: No abnormality : Within $\pm 0.5 \text{pF}$, : 1000 M Ω min.	
	High Permittivity(Cla	uss2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: **LD Low distort	: No abnormality : Within \pm 12.5% (BJ, B7, C6, C7, D7, LD($\%$)) : 5.0% max.(BJ, B7, C6, C7, D7, LD($\%$)) : 50 M Ω μ F or 1000 M Ω whichever is smaller. tion high value multilayer ceramic capacitor	
			ass 1	Class 2	
Test	Preconditioning	Standard N	High Frequency Type	All items Thermal treatment(at 150°C for 1 hr) Note 2	
Methods and	3		60±2°C	40±2°C	
Remarks	Humidity	90 to	95%RH	90 to 95%RH	
	Duration	500+2	4/-0 hrs	500 + 24 / -0 hrs	
	Recovery	6 to 24 hrs (Stand	ard condition)Note 5	24±2 hrs (Standard condition) Note 5	

16. Humidity Lo	pading				
	Temperature	Standard	Appearance Capacitance change Q Insulation resistance	: Wit : C< C≧	abnormality thin $\pm 7.5\%$ or ± 0.75 pF, whichever is larger. <30 pF: Q $\ge 100+10$ C/3 ≥ 30 pF: Q ≥ 200 (C: Nominal capacitance) 0 M Ω min.
Specified Value	Compensating(Class1)	High Frequency Type	Appearance : No abnormality $ \begin{array}{ll} \text{Capacitance change} & : \text{No abnormality} \\ : \text{C} \leqq 2 \text{pF} : \text{Within } \pm 0.4 \text{ pF} \\ & \text{C} \gt 2 \text{pF} : \text{Within } \pm 0.75 \text{ pF} \\ & \text{(C: Nominal capacitance)} \\ \text{Insulation resistance} & : 500 \text{ M}\Omega \text{ min.} \end{array} $		≦2pF∶Within ±0.4 pF >2pF∶Within ±0.75 pF (C∶Nominal capacitance)
	High Permittivity(Class2	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low distor	: Wit : 5.0 : 25	abnormality thin ±12.5% (BJ, B7, C6, C7, D7, LD(※)) % max. (BJ, B7, C6, C7, D7, LD(※)) MΩμF or 500 MΩ, whichever is smaller. igh value multilayer ceramic capacitor	
		C	Blass 1		Class 2
		Standard	High Frequency Ty	ре	All items
	Preconditioning		None		Voltage treatment (Rated voltage are applied for 1 hour at 40°C) Note 3
Test	Temperature	40±2°C	60±2°C		40±2°C
Methods and	Humidity	90 t	o 95%RH		90 to 95%RH
Remarks	Duration	500+	24/-0 hrs		500+24/-0 hrs
	Applied voltage	Rate	d voltage		Rated voltage
	Charge/discharge current	50r	mA max.		50mA max.
	Recovery	6 to 24 hrs (Stan	dard condition)Note 5		24±2 hrs (Standard condition) Note 5

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

17. High Tempe	erature Loading					
Specified Value	Temperature Compensating(Class1)	Appearance Capacitance change Q Insulation resistance		: C<10pF: Q≧200+10C 10≦C<30pF:Q≧275+2.5C C≧30pF: Q≧350(C:Nominal capacitance)		
		High Frequency Type Appearance : No abnormality Capacitance change : Within $\pm 3\%$ or ± 0.3 pF, whichever is larger. Insulation resistance : $1000~\text{M}\Omega$ min.			is larger.	
	High Permittivity(Class2) Note 1	Appearance Capacitance change Dissipation factor Insulation resistance Note: ※LD Low dis	: 5.0% max.(BJ,	6 (BJ, B7, C6, C7, D B7, C6, C7, D7, LD(1000 MΩ, whicheve	※)) r is smaller.
		Clas	s 1		Class 2	
		Standard H	High Frequency Type	BJ, LD(※)	C6	B7, C7, D7
	Preconditioning	None		Voltage treatment (Twice the rated voltage shall be applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4		
Test	Temperature	Maximum operatii	ng temperature	Maximum operating temperature		
Methods and	Duration	1000+48	/-0 hrs		1000+48/-0 hr	rs
Remarks	Applied voltage	Rated vol	tage × 2	F	Rated voltage × 2 N	ote 4
Remarks	Charge/discharge current	50mA	max.	50mA max.		
	Recovery	6 to 24hr (Standard	Condition) Note 5	24±2 hrs(Standard condition)Note 5		
			Note	*LD Low distortion	on high value multil	ayer ceramic capacitor

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

- Note 2 Thermal treatment : Initial value shall be measured after test sample is heat-treated at $150 + 0/-10^{\circ}$ C for an hour and kept at room temperature for 24 ± 2 hours.
- Note 3 Voltage treatment: Initial value shall be measured after test sample is voltage—treated for an hour at both the temperature and voltage specified in the test conditions, and kept at room temperature for 24±2hours.
- Note 4 150% of rated voltage is applicable to some items. Please refer to their specifications for further information.
- Note 5 Standard condition: Temperature: 5 to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condition.
 - Temperature: $20\pm2^{\circ}$ C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa Unless otherwise specified, all the tests are conducted under the "standard condition".

[►] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

Precautions on the use of Multilayer Ceramic Capacitors

■PRECAUTIONS

1. Circuit Design

- ◆Verification of operating environment, electrical rating and performance
 - 1. A malfunction of equipment in fields such as medical, aerospace, nuclear control, etc. may cause serious harm to human life or have severe social ramifications.

Therefore, any capacitors to be used in such equipment may require higher safety and reliability, and shall be clearly differentiated from them used in general purpose applications.

Precautions

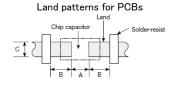
- ◆Operating Voltage (Verification of Rated voltage)
 - 1. The operating voltage for capacitors must always be their rated voltage or less.
 - If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less.
 - For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.
 - 2. Even if an applied voltage is the rated voltage or less reliability of capacitors may be deteriorated in case that either a high frequency AC voltage or a pulse voltage having rapid rise time is used in a circuit.

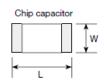
2. PCB Design

Precautions

- ◆Pattern configurations (Design of Land-patterns)
- 1. When capacitors are mounted on PCBs, the amount of solder used (size of fillet) can directly affect the capacitor performance. Therefore, the following items must be carefully considered in the design of land patterns:
 - (1) Excessive solder applied can cause mechanical stresses which lead to chip breaking or cracking. Therefore, please consider appropriate land-patterns for proper amount of solder.
 - (2) When more than one component are jointly soldered onto the same land, each component's soldering point shall be separated by solder-resist.
- ◆Pattern configurations (Capacitor layout on PCBs)

After capacitors are mounted on boards, they can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering of the boards, etc.). For this reason, land pattern configurations and positions of capacitors shall be carefully considered to minimize stresses.


◆Pattern configurations (Design of Land-patterns)


The following diagrams and tables show some examples of recommended land patterns to prevent excessive solder amounts.

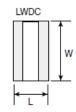
- (1) Recommended land dimensions for typical chip capacitors
- Multilayer Ceramic Capacitors : Recommended land dimensions (unit: mm)

Wave-soldering

ре	107	212	316	325
Г	1.6	2.0	3.2	3.2
W	8.0	1.25	1.6	2.5
,	0.8 to 1.0	1.0 to 1.4	1.8 to 2.5	1.8 to 2.5
~	0.5 to 0.8	0.8 to 1.5	0.8 to 1.7	0.8 to 1.7
	0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5
	L W	L 1.6 W 0.8 A 0.8 to 1.0 B 0.5 to 0.8	L 1.6 2.0 W 0.8 1.25 A 0.8 to 1.0 1.0 to 1.4 B 0.5 to 0.8 0.8 to 1.5	L 1.6 2.0 3.2 W 0.8 1.25 1.6 0.8 to 1.0 1.0 to 1.4 1.8 to 2.5 0.5 to 0.8 0.8 to 1.5 0.8 to 1.7

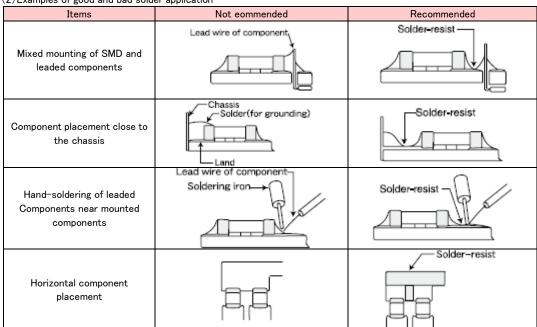
Reflow-soldering

Technical considerations


		U							
Ту	⁄ре	042	063	105	107	212	316	325	432
Size	L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5
Size	W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2
-	4	0.15 to 0.25	0.20 to 0.30	0.45 to 0.55	0.8 to 1.0	0.8 to 1.2	1.8 to 2.5	1.8 to 2.5	2.5 to 3.5
E	3	0.15 to 0.20	0.20 to 0.30	0.40 to 0.50	0.6 to 0.8	0.8 to 1.2	1.0 to 1.5	1.0 to 1.5	1.5 to 1.8
(C	0.15 to 0.30	0.25 to 0.40	0.45 to 0.55	0.6 to 0.8	0.9 to 1.6	1.2 to 2.0	1.8 to 3.2	2.3 to 3.5

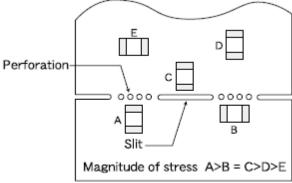
Note: Recommended land size might be different according to the allowance of the size of the product.

●LWDC: Recommended land dimensions for reflow-soldering


(unit: mm)

Туре		105	107	212
Size L		0.52	0.8	1.25
Size	W	1.0	1.6	2.0
A		0.18 to 0.22	0.25 to 0.3	0.5 to 0.7
В		0.2 to 0.25	0.3 to 0.4	0.4 to 0.5
С		0.9 to 1.1	1.5 to 1.7	1.9 to 2.1

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

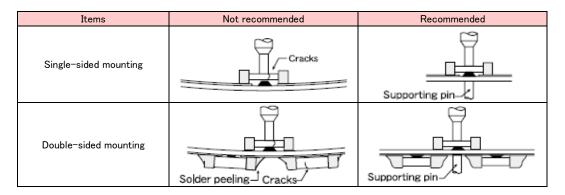

(2) Examples of good and bad solder application

- ◆Pattern configurations (Capacitor layout on PCBs)
 - 1-1. The following is examples of good and bad capacitor layouts; capacitors shall be located to minimize any possible mechanical stresses from board warp or deflection.

Items	Not recommended	Recomm	mended
Deflection of board			Place the product at a right angle to the direction of the anticipated mechanical stress.

1-2. The amount of mechanical stresses given will vary depending on capacitor layout. Please refer to diagram below.

3. Mounting


considerations

1-3. When PCB is split, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, please consider the PCB, split methods as well as chip location.

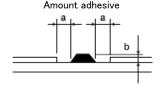
◆Adjustment of mounting machine 1. When capacitors are mounted on PCB, excessive impact load shall not be imposed on them. 2. Maintenance and inspection of mounting machines shall be conducted periodically. Precautions ◆Selection of Adhesives 1. When chips are attached on PCBs with adhesives prior to soldering, it may cause capacitor characteristics degradation unless the following factors are appropriately checked: size of land patterns, type of adhesive, amount applied, hardening temperature and hardening period. Therefore, please contact us for further information. ◆Adjustment of mounting machine 1. When the bottom dead center of a pick-up nozzle is too low, excessive force is imposed on capacitors and causes damages. To avoid this, the following points shall be considerable. Technical

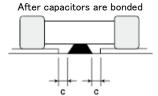
- - (1) The bottom dead center of the pick-up nozzle shall be adjusted to the surface level of PCB without the board deflection.
 - (2) The pressure of nozzle shall be adjusted between 1 and 3 N static loads.
 - (3) To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins or back-up pins shall be used on the other side of the PCB. The following diagrams show some typical examples of good and bad pick-up nozzle placement:

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) .

2. As the alignment pin is worn out, adjustment of the nozzle height can cause chipping or cracking of capacitors because of mechanical impact on the capacitors.

To avoid this, the monitoring of the width between the alignment pins in the stopped position, maintenance, check and replacement of the pin shall be conducted periodically.


Selection of Adhesives


Some adhesives may cause IR deterioration. The different shrinkage percentage of between the adhesive and the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect components. Therefore, the following precautions shall be noted in the application of adhesives.

- (1) Required adhesive characteristics
 - a. The adhesive shall be strong enough to hold parts on the board during the mounting & solder process.
 - b. The adhesive shall have sufficient strength at high temperatures.
 - c. The adhesive shall have good coating and thickness consistency.
 - d. The adhesive shall be used during its prescribed shelf life.
 - e. The adhesive shall harden rapidly.
 - f. The adhesive shall have corrosion resistance.
 - g. The adhesive shall have excellent insulation characteristics.
 - h. The adhesive shall have no emission of toxic gasses and no effect on the human body.
- (2) The recommended amount of adhesives is as follows;

[Recommended condition]

Figure	212/316 case sizes as examples				
а	0.3mm min				
b	100 to 120 μ m				
С	Adhesives shall not contact land				

4. Soldering

Precautions

◆Selection of Flux

Since flux may have a significant effect on the performance of capacitors, it is necessary to verify the following conditions prior to use;

- (1) Flux used shall be less than or equal to 0.1 wt% (in Cl equivalent) of halogenated content. Flux having a strong acidity content shall not be applied.
- (2) When shall capacitors are soldered on boards, the amount of flux applied shall be controlled at the optimum level.
- (3) When water-soluble flux is used, special care shall be taken to properly clean the boards.

◆ Soldering

Temperature, time, amount of solder, etc. shall be set in accordance with their recommended conditions.

Sn-Zn solder paste can adversely affect MLCC reliability.

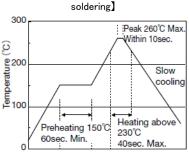
Please contact us prior to usage of Sn-Zn solder.

◆Selection of Flux

- 1-1. When too much halogenated substance (Chlorine, etc.) content is used to activate flux, or highly acidic flux is used, it may lead to corrosion of terminal electrodes or degradation of insulation resistance on the surfaces of the capacitors.
- 1-2. Flux is used to increase solderability in wave soldering. However if too much flux is applied, a large amount of flux gas may be emitted and may adversely affect the solderability. To minimize the amount of flux applied, it is recommended to use a flux-bubbling system.
- 1-3. Since the residue of water-soluble flux is easily dissolved in moisture in the air, the residues on the surfaces of capacitors in high humidity conditions may cause a degradation of insulation resistance and reliability of the capacitors. Therefore, the cleaning methods and the capability of the machines used shall also be considered carefully when water-soluble flux is used.

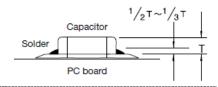
Technical considerations

♦Soldering

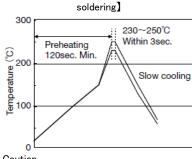

- · Ceramic chip capacitors are susceptible to thermal shock when exposed to rapid or concentrated heating or rapid cooling.
- · Therefore, the soldering must be conducted with great care so as to prevent malfunction of the components due to excessive thermal
- Preheating: Capacitors shall be preheated sufficiently, and the temperature difference between the capacitors and solder shall be within 100 to 130°C.
- Cooling: The temperature difference between the capacitors and cleaning process shall not be greater than 100°C.
- This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).

[Reflow soldering]

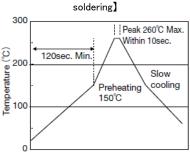
[Recommended conditions for eutectic


soldering Preheating 230°C Within 10 sec. 60sec 60sec Temperature (°C) 200 Min. Slow cooling 100

Recommended condition for Pb-free


Caution

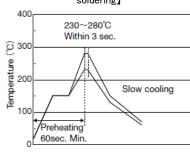
- \bigcirc The ideal condition is to have solder mass(fillet) controlled to 1/2 to 1/3 of the thickness of a capacitor.
- ②Because excessive dwell times can adversely affect solderability, soldering duration shall be kept as close to recommended times as possible.
- ③Allowable number of reflow soldering: 2 times max.



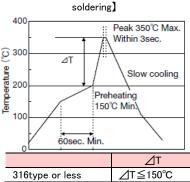
[Wave soldering]

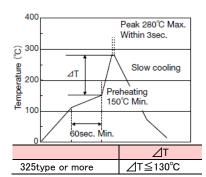
[Recommended conditions for eutectic

[Recommended condition for Pb-free



Caution


- ①Wave soldering must not be applied to capacitors designated as for reflow soldering only.
- 2 Allowable number of wave soldering: 1 times max.


[Hand soldering]

[Recommended conditions for eutectic soldering]

[Recommended condition for Pb-free

- ①Use a 50W soldering iron with a maximum tip diameter of 1.0 mm.
- 2The soldering iron shall not directly touch capacitors.
- 3 Allowable number of hand soldering: 1 times max.

5. Cleaning

Precautions

- ◆Cleaning conditions
 - 1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.)
 - 2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.

Technical considerations

- 1. The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance).
- 2. Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked;

Ultrasonic output: 20~W/l or less Ultrasonic frequency: 40 kHz or less

This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/)

	Ultrasonic washing period : 5 min. or less
6. Resin coating	and mold
Precautions	 With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period of while left under normal storage conditions resulting in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive hear
	may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.

7. Handling	
	◆Splitting of PCB 1. When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. 2. Board separation shall not be done manually, but by using the appropriate devices.
Precautions	 ◆Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used. (2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.

8. Storage conditions		
Precautions	 ◆Storage 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. •Recommended conditions Ambient temperature: Below 30°C Humidity: Below 70% RH The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capacitors shall be used within 6 months from the time of delivery. •Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour. 	
Technical considerations	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping/packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability before using the capacitors.	

**RCR-2335B (Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.

[▶] This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/).