

RL78/G1D R01DS0258EJ0120

RENESAS MCU

Rev.1.20 Dec 16, 2016

The RL78/G1D is a microcomputer incorporating the RL78 CPU core and low power consumption RF transceiver supporting the Bluetooth ver.4.1 (Low Energy Single mode) specifications.

1. OUTLINE

1.1 Features

Low Power Technology (3.0V / MCU part: STOP)

- RF transmitter active: 4.3 mA (TYP.)
- RF receiver active: 3.5 mA (TYP.)
- RF sleep (POWER_DOWN mode) operation: 0.3 μA (TYP.)

On-Chip RF Transceiver

- Bluetooth v4.1 Spec. (Low Energy, Single mode)
- 2.4 GHz ISM Band, GFSK modulation, TDMA/TDD Frequency Hopping (included AES encryption circuit)
- Adaptivity, exclusively for use in operation as a slave device
- · Single ended RF interface

16-bit RL78 CPU Core

- CISC Architecture (Harvard) with 3-stage pipeline
- Minimum instruction execution time: Can be changed from high speed (0.03125 μs: @ 32 MHz operation with high-speed on-chip oscillator) to ultra-low speed (30.5 μs: @ 32.768 kHz operation with subsystem clock)
- Multiply Signed & Unsigned: 16 x 16 to 32-bit result in 1 clock cycle
- 1-wire on-chip debug function

Main Flash Memory

- 128 KB / 192KB / 256 KB (Block size: 1 KB)
- On-chip single voltage flash memory with protection from block erase/writing
- Self-programming with secure boot swap function and flash shield window function

Data Flash Memory

- · Data Flash with background operation
- Data flash size: 8 KB size (Erase block size: 1 KB)
- Erase Cycles: 1 Million (typ.)
- Erase/programming voltage: 1.8 V to 3.6 V

RAM

- 12 KB / 16KB / 20 KB size
- Supports operands or instructions
- Back-up retention in all modes

On-chip Oscillator

- High accuracy on-chip Oscillator for MCU
- 15kHz low-speed on-chip oscillator for MCU
- 32.768 kHzOn-chip oscillator for the RF slow clock

Data Memory Access (DMA) Controller

- · Up to 4 fully programmable channels
- Transfer unit: 8- or 16-bit

Multiple Communication Interfaces

- I²C master×2
- CSI/ SPI (7-, 8-bit) ×2,
- UART (7-, 8-, 9-bit) ×2
- Multi-master I²C ×1

Supply voltage Management

- Low voltage detection (LVD) with 12 setting options (Notification to Interrupt and/or reset function)
- · Power-on reset (POR) monitor/generator

Extended-Function Timers

- Multi-function 16-bit timers: 8 channels
- Real-time clock (RTC): 1 channel (full calendar and alarm function with watch correction function)
- Interval Timer: 12-bit, 1 channel
- · Watchdog timer: 1 channel (window function)

Rich Analog

- 8/10-bit resolution A/D converter (V_{DD} = 1.6 to 3.6 V)
- · Analog input: 8 channels
- Internal voltage reference (1.45 V) and temperature sensor^{Note}

Note Can be selected only in HS (high-speed main) mode

Safety Functions

 Comply with the IEC60730 and IEC61508 safety standards

General Purpose I/O

- I/O port: 32 (N-ch open drain I/O [withstand voltage of 6 V]: 2, N-ch open drain I/O [VDD withstand voltage]: 9
- Different potential interface support: Can connect to a 1.8/2.5 V device

Standby function

 MCU part: Low power consumption mode: HALT, STOP

Power saving mode: SNOOZE

 RF part :Low power saving mode with 6 setting (min. 0.1 μA)

Operating Voltage / Operating Ambient Temperature $1.6\ V$ to $3.6\ V$ / -40 to $+85\ ^{\circ}C$

Package Type and Pin Count

48-pin HWQFN (6 × 6) (0.4mm pitch)

ROM, RAM capacities

Flash ROM	Data Flash	RAM	RL78/G1D
128 KB	8 KB	12 KB	R5F11AGG
192 KB	8 KB	16 KB	R5F11AGH
256 KB	8 KB	20 KB ^{Note}	R5F11AGJ

Note 19 KB when the self-programming function is used.

1.2 List of Part Numbers

Figure 1-1. Part Number, Memory Size, and Package of RL78/G1D

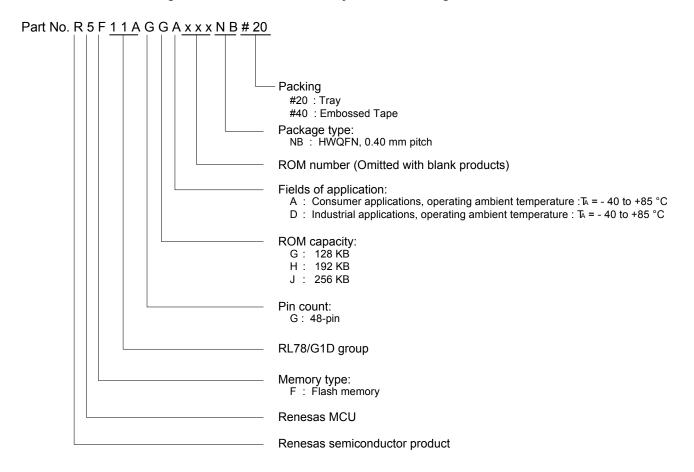
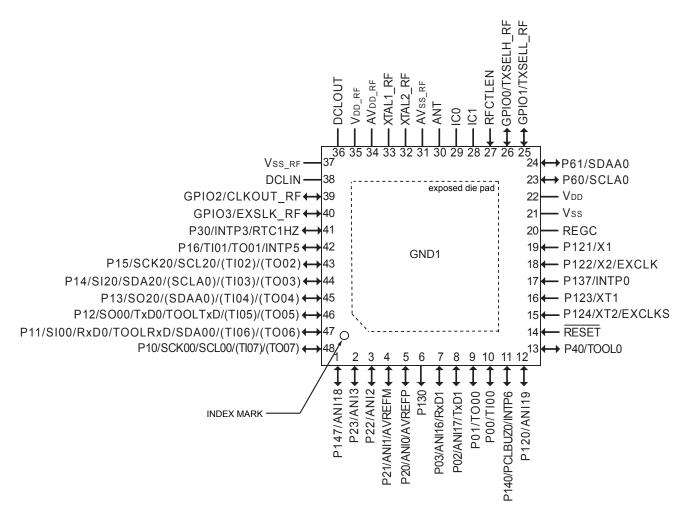


Table 1-1. List of Ordering Part Numbers

Pin count	Package	Fields of Application Note	Ordering Part Number	Code Flash Memory	Data Flash Memory
48 pins	Plastic WQFN (6 × 6)	А	R5F11AGGANB#20 R5F11AGGANB#40	128 KB	8 KB
		D	R5F11AGGDNB#20 R5F11AGGDNB#40		
		А	R5F11AGHANB#20 R5F11AGHANB#40	192 KB	8 KB
		D	R5F11AGHDNB#20 R5F11AGHDNB#40		
		А	R5F11AGJANB#20 R5F11AGJANB#40	256 KB	8 KB
		D	R5F11AGJDNB#20 R5F11AGJDNB#40		

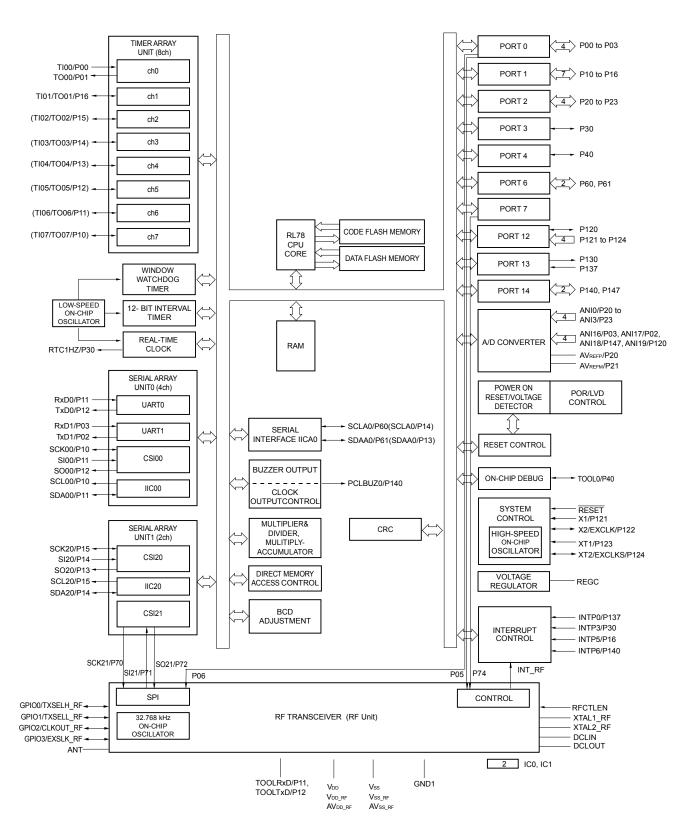

Note For the fields of application, see Figure 1-1 Part Number, Memory Size, and Package of RL78/G1D.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3 Pin Configuration (Top View)

<R>

• 48-pin plastic WQFN (6 × 6 mm, 0.4 mm pitch)



- Cautions 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF).
 - 2. Connect the metal pad (GND1) on the back of the package that has the same potential as AVss_RF.
- Remarks 1. For pin identification, see 1.4 Pin Identification.
 - **2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.4 Pin Identification

ANIO to ANI3,	Analog input	PCLBUZ0:	Programmable clock output/buzzer
ANI16 to ANI19:	A-t	DEOO:	output
ANT:	Antenna connection	REGC:	Regulator capacitance
AVDD_RF:	Power supply for RF	RFCTLEN:	RF control enable
	analog	RTC1HZ:	Real-time clock correction clock
AVREFM:	Analog reference voltage		(1 Hz) output
	minus	RESET:	Reset
AV _{REFP} :	Analog reference voltage	RxD0, RxD1:	Receive data
	plus	SCLA0:	Serial clock input/output
AVss_rf:	Ground for RF analog	SCK00, SCK20,	
CLKOUT_RF:	Clock output	SCL00, SCL20:	Serial clock output
DCLIN:	DC-DC converter inductor	SDAA0, SDA00, SDA20:	Serial data input/output
	and DCLOUT capacitor	SI00, SI20:	Serial data input
DCLOUT:	DC-DC converter output	SO00, SO20:	Serial data output
EXCLK:	External clock input	TI00 to TI07:	Timer input
	(Main system clock)	TO00 to TO07:	Timer output
EXCLKS:	External clock input	TOOL0:	Data input/output for tool
	(Subsystem clock)	TOOLRxD, TOOLTxD:	Data input/output for external device
EXSLK_RF:	External slow clock input	TxD0, TxD1:	Transmit data
GND1:	Package exposed die pad	TXSELL_RF,	External PA/LNA control
GPIO0 to GPIO3:	GPIO at RF unit	TXSELH_RF:	
IC0, IC1:	Internal circuit	V _{DD} :	Power supply
INTP0, INTP3,	External interrupt input	VDD_RF:	Power Supply for RF
INTP5, INTP6:		Vss:	Ground
P00 to P03:	Port 0	Vss_rf:	Ground for RF
P10 to P16:	Port 1	X1, X2:	Crystal oscillator (Main system clock)
P20 to P23:	Port 2	XT1, XT2:	Crystal oscillator (Subsystem clock)
P30:	Port 3	XTAL1 RF,	Crystal oscillator (RF clock)
P40:	Port 4	XTAL2_RF:	• • •
P60, P61:	Port 6	_	
P120 to P124:	Port 12		
P130, P137:	Port 13		
P140, P147:	Port 14		
•			

1.5 Block Diagram

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

1.6 Outline of Functions

Caution This outline describes the functions at the time when Peripheral I/O redirection register (PIOR) is set to 00H.

(1/2)

	14	DEE44400	DEFATACLE	(1/2)		
	Item	R5F11AGG	R5F11AGH	R5F11AGJ		
Code flash memory		128 KB	192 KB	256 KB		
Data flash me	mory	8 KB	8 KB	8 KB		
RAM		12 KB	16 KB	20 KB ^{Note 1}		
Address space		1 MB				
System clock	(RF side)	32 MHz				
Main system	High-speed system	, ,	external main system clock inpu	t (EXCLK)		
clock	clock	HS (High-speed main) mode: 1				
		HS (High-speed main) mode: 1				
		LS (Low-speed main) mode: 1 t				
		LV (Low-voltage main) mode: 1	· · · · · · · · · · · · · · · · · · ·			
	High-speed on-chip oscillator	HS (High-speed main) mode: 1 HS (High-speed main) mode: 1				
	Oscillator	LS (Low-speed main) mode: 1				
		LV (Low-voltage main) mode: 1				
Subsystem clo	ock	XT1 (Crystal) oscillation, Extern 32.768 kHz	nal main system clock input (EXC	CLKS)		
RF slow clock	External input	External clock input for RF bloc	k (EXSLK_RF) 32.768 kHz (TYF	P.)		
	On-chip Oscillator	32.768 kHz (TYP.)				
Low apped on		15 kHz (TYP.)				
-	-chip oscillator					
General-purpo	ruction execution time	(8-bit register × 8) × 4 banks				
Willimitati iiisu	action execution time	0.03125 µs (High-speed on-chip oscillation clock: f _{IH} = 32 MHz operation)				
		0.05 μs (High-speed system clock: f _{MX} = 20 MHz operation) 30.5 μs (Subsystem clock: f _{SUB} = 32.768 kHz operation)				
Instruction oot			= 32.700 KHZ Operation)			
Instruction set		Data transfer (8/16 bits)Adder and subtractor/logical	operation (8/16 bits)			
		Multiplication (8 bits × 8 bits)				
	T		nanipulation (Set, reset, test, and	Boolean operation), etc.		
I/O port	Total	32 ^{Note 2}				
	CMOS I/O	20 ^{Note 2}				
	CMOS input	5 ^{Note 2}				
	CMOS output	1 ^{Note 2}				
	N-ch O.D. I/O (withstand voltage: 6 V)	2				
	GPIO (RF block)	4				
2.4 GHz RF tr	,	Supporting Bluetooth v4.1 Specification (Single mode). 2.4 GHz ISM Band, GFSK modulation, TDMA/TDD frequency hopping (Including AES encryption circuit.)				
		Adaptivity (Only in slave operat	ion)			
Timer	16-bit timer	8 channels				
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	mer 1 channel				

(Notes are listed on the next page.)

Notes 1. This is about 19 KB when the self-programming function is used.

2. When RF is used, this count includes the pins that connect the MCU with the RF transceiver by the user externally on the board.

(2/2)

Item	1	R5F11AGG R5F11AGH R5F11AGJ							
Timer	Timer output	8 channels (PWM outputs: 7 ^{Note 1}) ^{Note 2}							
	RTC output	1 channel 1 Hz (subsystem clock: fsub = 32	channel Hz (subsystem clock: fsub = 32.768 kHz)						
Clock output/buzzer	output	1 Note 3							
		(Main system clock: fmain = 20	048 kHz, 4.096 kHz, 8.192 kHz, 1						
	RF unit (Clock output)	• 16 MHz, 8 MHz, 4 MHz							
8/10-bit resolution A	/D converter	8 channels							
Serial interface		CSI/simplified I ² C: 1 channel UART: 1 channel	·						
	I ² C bus	CSI: 1 channel (dedicated for internal communications) 1 channel							
Multiplier and divider/multiply- accumulator		Multiplication: 16 bits × 16 bits = 32 bits (Unsigned or signed) Division: 32 bits ÷ 32 bits = 32 bits (Unsigned) Multiply-accumulate: 16 bits × 16 bits + 32 bits = 32 bits (Unsigned or signed)							
DMA controller		4 channels							
Vectored interrupt	Internal	29							
sources	External	4							
Reset		Reset by RESET pin Internal reset by watchdog tim Internal reset by power-on-res Internal reset by voltage detection Internal reset by illegal instruction Internal reset by RAM parity e Internal reset by illegal-memor	et ctor tion execution ^{Note 4} rror						
Power-on-reset circ	uit	,	 Power-on-reset: 1.51 (TYP.) Power-down-reset: 1.50 (TYP.) 						
Voltage detector		Rising edge: 1.67 V to 3.13 V (12 stages) Falling edge: 1.63 V to 3.06 V (12 stages)							
On-chip debug func	tion	Provided							
Power supply voltage	je	V _{DD} = 1.6 to 3.6 V (V _{DD} =1.8 to 3.6 V on usage of DC-DC converter)							
Operating ambient t	emperature	T _A = -40 to +85 °C							
Package		48-pin QFN (6 × 6), (0.4 mm pito	ch)						

- **Notes 1.** The number of outputs varies, depending on the setting of channels in use and the number of the master (see **7.9.3 Operation as multiple PWM output function**).
 - 2. When setting to PIOR0 = 1
 - **3.** When RF is used, this count includes the pins that connect the MCU with the RF transceiver by the user externally on the board.
 - **4.** The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS

Caution

The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.

2.1 Absolute Maximum Ratings

Absolute Maximum Ratings ($T_A = 25$ °C) (1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	V _{DD}	V _{DD}	-0.5 to +6.5	V
	VDDRF1	V _{DD_RF}	-0.5 to +4.0	٧
	V _{DDRF2}	AV _{DD_RF}	-0.5 to +4.0	V
	V _{DDRF3}	DCLIN	-0.5 to +4.0	V
	Vssrf	Vss_rf, AVss_rf	-0.5 to +0.3	٧
Input voltage	V _{I1}	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P120, P121, P122, P123, P124, P137, P140, P147, RESET	–0.3 to V_{DD} +0.3 ^{Note 1}	>
	V ₁₂	P60, P61	-0.3 to +6.5	٧
	VIRF1	GPI00, GPI01, GPI02, GPI03	-0.3 to V _{DD_RF} +0.3 Note 2	V
	VIRF2	ANT	-0.5 to +1.4	٧
Output voltage	Vo	P00, P01, P02, P03, P10, P11, P12, P14, P15, P16, P20, P21, P22, P23, P30, P40, P60, P61, P120, P130, P140, P147	-0.3 to V _{DD} +0.3 ^{Note 1}	V
	Vorf	GPI00, GPI01, GPI02, GPI03, DCLOUT	-0.3 to V _{DD_RF} +0.3 Note 2	V
Analog input voltage	Vai	ANI0, ANI1, ANI2, ANI3, ANI16, ANI17, ANI18, ANI19	-0.3 to V _{DD} +0.3 and -0.3 to V _{REF(+)} +0.3 Notes 2, 4	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{DD}+0.3^{Note 3}$	V
IC pin input voltage	VIIC	IC0, IC1	-0.5 to +0.3	V

Notes 1. Must be 6.5 V or lower.

- 2. Must be 4.0 V or lower.
- 3. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- **4.** Do not exceed $AV_{REF(+)} + 0.3 V$ in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** $AV_{REF(+)}$: + side reference voltage of the A/D converter.
 - 3. Reference voltage is Vss.

Absolute Maximum Ratings (T_A = 25°C) (2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current,	Іон1	Per pin	(This is applicable to all pins listed below.)	-40	mA
high		Total of all pins	P00, P01, P02, P03, P40, P120, P130, P140	- 70	mA
		-170mA	P10, P11, P12, P13, P14, P15, P16, P30, P147	-100	mA
	Іон2	Per pin	(This is applicable to all pins listed below.)	-0.5	mA
		Total of all pins	P20, P21, P22, P23	-2	mA
	IOHMRF	Per pin	GPIO0, GPIO1, GPIO2, GPIO3	–17	mA
Output current,	lol1	Per pin	(This is applicable to all pins listed below.)	40	mA
low		Total of all pins	P00, P01, P02, P03, P40, P120, P130, P140	70	mA
		170mA	P10, P11, P12, P13, P14, P15, P16, P30, P60, P61, P147	100	mA
	lol2	Per pin	(This is applicable to all pins listed below.)	1	mA
		Total of all pins	P20, P21, P22, P23	5	mA
	IOLRF	Per pin	GPIO0, GPIO1, GPIO2, GPIO3	17	mA
Operating	TA	In normal operation	mode	-40 to +85	°C
ambient temperature		In flash memory pro	gramming mode	-40 to +85	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF (+)}: + side reference voltage of the A/D converter.
 - 3. Reference voltage is Vss.

2.2 Operating Voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD} = V_{DD_RF} = AV_{DD_RF}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Cl	ock generator	Flash operation mode	Operation voltage	CPU operation clocks (f _{CLK}) ^{Note 1}
Main system clock	High-speed on-chip oscillator	HS (high-speed main) mode	2.7 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 32 MHz
(fmain)	(fiH)		2.4 V ≤ V _{DD} < 2.7 V	1 MHz to 16 MHz
		LS (low-speed main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 8 MHz
		LV (low-voltage main) mode Note 2	1.6 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 4 MHz
	X1 clock oscillator (fx)	HS (high-speed main) mode	2.7 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 20 MHz
		LS (low-speed main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 8 MHz
		LV (low-voltage main) mode Note 2	1.6 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 4 MHz
	External main system clock	HS (high-speed main) mode	2.7 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 20 MHz
	(fex)		2.4 V ≤ V _{DD} < 2.7 V	1 MHz to 16 MHz
		LS (low-speed main) mode	1.8 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 8 MHz
		LV (low-voltage main) mode Note 2	1.6 V ≤ V _{DD} ≤ 3.6 V	1 MHz to 4 MHz
Subsystem clock	XT1 clock oscillator (fxT)	-	1.6 V ≤ V _{DD} ≤ 3.6 V	32.768 kHz
(fsub)	External subsystem clock (fext)	_	1.6 V ≤ V _{DD} ≤ 3.6 V	32.768 kHz

Notes 1. Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2. This mode is prohibited to use in case of using DC-DC converter.

2.3 Oscillator Characteristics

2.3.1 X1, XT1, XRF oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V})$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency ^{Note 1}	Ceramic resonator	fx	2.7 V ≤ V _{DD} ≤ 3.6 V	1		20	MHz
	Crystal resonator		1.8 V ≤ V _{DD} < 2.7 V	1		8	MHz
			1.6 V ≤ V _{DD} ≤ 1.8 V	1		4	MHz
XT1 clock oscillation fre	equency ^{Note 1}	fxT		32	32.768	35	kHz
RF base clock oscillation	RF base clock oscillation frequency ^{Note 2}				32		MHz
RF base clock oscillation frequency accuracy ^{Note 2}		fxrfp		-20		+20	ppm

Notes 1. Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

2. This Oscillator characteristics is base clock for RF Transceiver.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

2.3.2 On-chip oscillator characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_\text{RF}} = \text{AV}_{\text{DD}_\text{RF}} \leq 3.6 \text{ V}, \ \text{Vss} = \text{V}_{\text{SS}_\text{RF}} = \text{AV}_{\text{SS}_\text{RF}} = 0 \text{ V})$

Oscillators	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fıн			1		32	MHz
High-speed on-chip oscillator clock	fihp	–20 to +85°C	1.8 V ≤ V _{DD} ≤3.6 V	-1.5		+1.5.	%
frequency accuracy			1.6 V ≤ V _{DD} <1.8 V	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	-2.5		+2.5.	%
			1.6 V ≤ V _{DD} <1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency Notes 3	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy	f ILP			-15		+15	%
On-chip oscillator clock frequency for the RF slow clock Note 3	filrf				32.768		kHz
On-chip oscillator clock frequency accuracy for the RF slow clock	filrfp			-0.025		0.025	%

- **Notes 1.** High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.
 - 2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.
 - 3. This indicates the oscillator characteristics only.

2.4 DC Characteristics

2.4.1 Output current

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Items	Symbol	Condition	ons		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			-10.0 ^{Note 2}	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V			-10.0	mA
		P140		1.8 V ≤ V _{DD} < 2.7 V			-5.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			-2.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V			-19.0	mA
		P30, P147		1.8 V ≤ V _{DD} < 2.7 V			-10.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			-5.0	mA
		Total of all pins ^{Note 3}		1.6 V ≤ V _{DD} ≤ 3.6 V			-135.0 ^{Note 4}	mA
	І он2	P20, P21, P22, P23	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			-0.1 ^{Note 2}	mA
			Total Note 3	1.6 V ≤ V _{DD} ≤ 3.6 V			-1.5	mA
	IOHRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	1.6 V ≤ V _{DD_RF} ≤ 3.6 V			-2.0	mA
Output current, low Note 1	lo _{L1}	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			20.0 Note 2	mA
		P60, P61	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			15.0 Note 2	mA
		P00, P01, P02, P03, P40, P120, P130,	Total Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V			15.0	mA
		P140		1.8 V ≤ V _{DD} < 2.7 V			9.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			4.5	mA
		P10, P11, P12, P13, P14, P15, P16,	Total Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V			35.0	mA
		P30, P60, P61, P147		1.8 V ≤ V _{DD} < 2.7 V			20.0	mA
				1.6 V ≤ V _{DD} < 1.8 V			10.0	mA
		Total of all pins ^{Note 3}		1.6 V ≤ V _{DD} ≤ 3.6 V			150.0	mA
	lo _{L2}	P20, P21, P22, P23	Per pin	1.6 V ≤ V _{DD} ≤ 3.6 V			0.4 Note 2	mA
			Total Note 3	1.6 V ≤ V _{DD} ≤ 3.6 V			5.0	mA
	IOLRF	GPIO0, GPIO1, GPIO2, GPIO3	Per pin	1.6 V ≤ V _{DD_RF} ≤ 3.6 V			2.0	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

- 2. However, do not exceed the total current value.
- **3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH × 0.7)/(n × 0.01)

<Example> Where n = 50% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(50 \times 0.01) = -14.0 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. Product for industrial applications (R5F11AGGDNB, R5F11AGHDNB, R5F11AGJDNB) is -100.0 mA.

(Caution and Remark are listed on the next page.)

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.2 Input current

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Input voltage, high	V _{IH1}	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P130, P140, P147		V _{DD}	V		
	V _{IH2}	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	2.0		V _{DD}	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	1.5		V _{DD}	V
	V _{IH3}	P20, P21, P22, P23		0.7V _{DD}		V _{DD}	V
	V _{IH4}	P60, P61		0.7V _{DD}		6.0	V
	V _{IH5}	P121, P122, P123, P124, P137,	RESET	0.8V _{DD}		V_{DD}	V
	VIHRF	GPIO0, GPIO1, GPIO2, GPIO3		0.85VDD_RF		V _{DD_RF}	V
Input voltage, low	VIL1	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147	Normal mode (I _{THL} = 1)	0		0.2V _{DD}	V
	V _{IL2}	P01, P03, P10, P11, P13, P14, P15, P16	TTL mode 3.3 V ≤ V _{DD} ≤ 3.6 V	0		0.5	V
			TTL mode 1.6 V ≤ V _{DD} < 3.3V	0		0.32	V
	VIL3	P20, P21, P22, P23		0		0.3V _{DD}	V
	V _{IL4} P60, P61			0		0.3V _{DD}	V
	VIL5	P121, P122, P123, P124, P137,	RESET	0		0.2V _{DD}	V
	VILRF	GPIO0, GPIO1, GPIO2, GPIO3	·	0		0.1V _{DD_RF}	V

Caution The maximum value of V_{IH} of pins P00, P02, P03, and P10 to P15 is V_{DD}, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.3 Output voltage

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output	V _{OH1}	Iон = -2.0 mA	P00, P01, P02, P03, P10,	2.7 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.6			V
voltage,		Iон = -1.5 mA	P11, P12, P13, P14, P15,	1.8 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.5			V
high		Iон = -1.0 mA	P16, P30, P40, P120, P140, P147	1.6 V ≤ V _{DD} ≤ 3.6 V	V _{DD} - 0.5			V
		Іон = –10 μА	P130		V _{DD} - 0.3			V
	V _{OH2}	Іон = –100 μА	P20, P21, P22, P23		$V_{\text{DD}} - 0.5$			V
	Vohre	Iон = -2.0 mA	GPIO0, GPIO1, GPIO2,	2.7 V ≤ V _{DD_RF} ≤ 3.6 V	V _{DD_RF} - 0.3			V
		Iон = -1.5 mA	GPIO3	1.8 V ≤ V _{DD_RF} ≤ 3.6 V	VDD_RF - 0.3			V
Output	V _{OL1}	IoL = 3.0 mA	P00, P01, P02, P03, P10,	2.7 V ≤ V _{DD} ≤ 3.6 V			0.6	V
voltage, low		IoL = 1.5 mA	P11, P12, P13, P14, P15,				0.4	V
		IoL = 0.6 mA	P16, P30, P40, P120, P130, P140, P147	1.8 V ≤ V _{DD} ≤ 3.6 V			0.4	V
		IoL = 0.3 mA	1 1 10,1 1 11	1.6 V ≤ V _{DD} ≤ 3.6 V			0.4	V
	V _{OL2}	Ιοι = 400 μΑ	P20, P21, P22, P23				0.4	V
	Volrf		GPIO0, GPIO1, GPIO2, GPIO	03			0.3	V

Caution P00, P02, P03, and P10 to P15 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.4 Input leakage current

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішн1	VI = V _{DD}	P00, P01, P02, P03, P P15, P16, P30, P40, P P147			1	μΑ	
	ILIH2	VI = V _{DD}	P20, P21, P22, P23, P	137, RESET			1	μΑ
	Ішнз	VI = V _{DD}	P121, P122, P123,	In input port			1	μΑ
			P124 (EXCLK,	P124 (EXCLK, EXCLKS) (XT1, XT2)				μΑ
			In resonator connection				10	μΑ
	ILIHRE	VI = V _{DD_RF}	GPIO0, GPIO1, GPIO2			10	μΑ	
Input leakage current, low	ILIL1	VI = V _{SS}	P00, P01, P02, P03, P P15, P16, P30, P40, P P147			-1	μΑ	
	ILIL2	VI = Vss	P20, P21, P22, P23, P	137, RESET			-1	μΑ
	ILIL3	VI = Vss	P121, P122, P123,	In input port	_		-1	μA
			P124 (EXCLK,	In external clock input	_		-1	μA
			EXCLKS) (X11, X12)	EXCLKS) (XT1, XT2) In resonator connection			-10	μΑ
	ILILRF	VI = V _{SS_RF}	GPIO0, GPIO1, GPIO2	2, GPIO3			-10	μΑ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.4.5 Resistance

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
On-chip pll-up resistance	Ru	VI = V _{SS}	P00, P01, P02, P03, P10, P11, P12, P13, P14, P15, P16, P30, P40, P120, P140, P147 In input mode	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 Current Consumption

The Current Consumption by the RL78/G1D is the total current including that for the MCU (current flowing into the VDD pin) and that for the RF unit (current flowing into the VDD_RF, AVDD_RF pins).

The characteristics of the MCU (current flowing into the V_{DD} pin) are given in 2.5.1 and the characteristics of the RF unit (current flowing into the V_{DD_RF}/AV_{DD_RF} pins) are given in 2.5.2

2.5.1 MCU

(1) Operating current

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Operating	I _{DD1}	HS (high-	Basic operation	f _{IH} = 32 MHz Note 2	V _{DD} = 3.0 V		2.3		mA
current Note 1		speed main) mode ^{Note 5}	Normal operation	f _{IH} = 32 MHz Note 2	V _{DD} = 3.0 V		5.2	8.5	mA
		mode		f _{IH} = 24 MHz Note 2	V _{DD} = 3.0 V		4.1	6.6	mA
				f _{IH} = 16 MHz Note 2	V _{DD} = 3.0 V		3.0	4.7	mA
		LS(low-speed	Normal operation	f _{IH} = 8 MHz Note 2	V _{DD} = 3.0 V		1.3	2.1	mA
		main) mode			V _{DD} = 2.0 V		1.3	2.1	mA
		LV (low-	Normal operation	f _{IH} = 4 MHz Note 2	V _{DD} = 3.0 V		1.3	1.8	mA
		voltage main) mode Note 5			V _{DD} = 2.0 V		1.3	1.8	mA
		HS (high-	Normal operation	f _{MX} = 20 MHz Note 3	V _{DD} = 3.0 V Note 6		3.4	5.5	mA
		speed main) mode ^{Note 5}					3.6	5.7	mA
		mode		f _{MX} = 10 MHz Note 3	V _{DD} = 3.0 V Note 6		2.1	3.2	mA
						2.1	3.2	mA	
			d Normal operation	f _{MX} = 8 MHz Note 3	V _{DD} = 3.0 V Note 6		1.2	2.0	mA
		main) mode					1.2	2.0	mA
					V _{DD} = 2.0 V Note 6		1.2	2.0	mA
							1.2	2.0	mA
		Subsystem	Normal operation	f _{SUB} = 32.768 kHz Note 4	$T_A = -40^{\circ}C^{\text{Note 6}}$		4.8	5.9	μΑ
		clock operation					4.9	6.0	μΑ
		operation			T _A = +25°C Note 6		4.9	5.9	μΑ
							5.0	6.0	μΑ
					T _A = +50°C Note 6		5.0	7.6	μΑ
							5.1	7.7	μΑ
					T _A = +70°C Note 6		5.2	9.3	μA
							5.3	9.4	μA
					$T_A = +85^{\circ}C^{\text{Note 6}}$		5.7	13.3	μA
							5.8	13.4	μA

(Notes and Remarks are listed on the next page.)

- Notes 1. Current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. When high-speed system clock and subsystem clock are stopped.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - **4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V} @ 1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V} @ 1 \text{ MHz}$ to 4 MHz

6. The upper value is for square-wave input and the lower is with an oscillator connected.

Remarks 1. fmx: High-speed system clock frequency (External main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- **3.** fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation, temperature condition of the TYP. value is T_A = 25°C

(2) Standby current

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Parameter	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
HALT	I _{DD2}	HS (high-speed	f _{IH} = 32 MHz Note 4	V _{DD} = 3.0 V		0.62	1.86	mA
current Note 1, 2		main) mode Note 7	f _{IH} = 24 MHz Note 4	V _{DD} = 3.0 V		0.50	1.45	mA
			f _{IH} = 16 MHz Note 4	V _{DD} = 3.0 V		0.44	1.11	mA
		LS (low-speed main)	f _{IH} = 8 MHz Note 4	V _{DD} = 3.0 V		290	620	μΑ
		mode Note 7		V _{DD} = 2.0 V		290	620	μΑ
		LV (low-voltage	f _{IH} = 4 MHz Note 4	V _{DD} = 3.0 V		440	680	μΑ
		main) mode Note 7		V _{DD} = 2.0 V		440	680	μΑ
		HS (high-speed	f _{MX} = 20 MHz Note 3	$V_{DD} = 3.0 V^{Note 9}$		0.31	1.08	mA
		main) mode Note 7				0.48	1.28	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 3}}$	V _{DD} = 3.0 V Note 9		0.21	0.63	mA
						0.28	0.71	mA
		LS (low-speed main)	$f_{MX} = 8 MHz^{Note 3}$	$V_{DD} = 3.0 V^{Note 9}$		110	360	μΑ
		mode Note 7				160	420	μΑ
				$V_{DD} = 2.0 V^{Note 9}$		110	360	μΑ
					160	420	μΑ	
			$f_{SUB} = 32.768 \text{kHz}^{\text{Note 5}}$	$T_A = -40^{\circ} C^{\text{Note 9}}$		0.28	0.61	μΑ
		operation				0.47	0.80	μΑ
				$T_A = +25^{\circ}C^{\text{Note 9}}$		0.34	0.61	μΑ
						0.53	0.80	μΑ
				$T_A = +50^{\circ}C^{\text{Note 9}}$		0.41	2.30	μΑ
						0.60	2.49	μΑ
				$T_A = +70^{\circ}C^{\text{Note 9}}$		0.64	4.03	μΑ
						0.83	4.22	μΑ
				$T_A = +85^{\circ}C^{\text{Note 9}}$		1.09	8.04	μΑ
						1.28	8.23	μΑ
STOP	IDD3	TA = -40°C				0.19	0.52	μΑ
current Note 6, 8		TA = +25°C				0.25	0.52	μΑ
		TA = +50°C				0.32	2.21	μΑ
		TA = +70°C				0.55	3.94	μΑ
		TA = +85°C				1.00	7.95	μΑ

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - **5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
 - 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: 2.7 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V} @ 1 \text{ MHz to } 16 \text{ MHz}$

LS (low-speed main) mode: 1.8 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 8 MHz

LV (low-voltage main) mode: 1.6 V ≤ V_{DD} ≤ 3.6 V@1 MHz to 4 MHz

- **8.** If operation of the subsystem clock when STOP mode, same as when HALT mode of subsystem clock operation.
- 9. The upper value is for square-wave input and the lower is with an oscillator connected.

Remarks 1. fmx: High-speed system clock frequency (External main system clock frequency)

- 2. fin: High-speed on-chip oscillator clock frequency
- 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) Current for each peripheral circuit

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	FIL Note 1				0.20		μA
Current when PCLBUZ0 and EXSLK_RF are connected together and MCU supplies RF slow clock to RF	I _{PCEX} Note 1				1.0		μА
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operating current	I _{IT} Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	Notes 1, 2, 5	f∟ is 15 kHz			0.22		μΑ
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	AV _{REFP} = V _{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	ADREF Note 1				75.0		μA
Thermometer sensor operating current	I _{TMPS} Note 1				75.0		μΑ
LVD operating current	I _{LVI} Note 1, 7				0.08		μΑ
Flash self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	mA
		CSI/UART operation	1		0.70	0.84	mA

Notes 1. Current flowing to VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the XT1 oscillator). The value of the current value of the RL78 microcontroller is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. Also, add the value of IFIL in case of selecting low-speed on-chip oscillator. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- **4.** Current flowing only to the 12 bit interval timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of IDD1 or IDD2 and IIT when fCLK = fSUB when the watchdog timer operates in STOP mode. When using low-speed on-chip oscillator, add IFIL.
- **5.** Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the MCU is the sum of lob1, lob2 or lob3 and lwbT when the watchdog timer is in operation.
- **6.** Current flowing only to the A/D converter. The current value of MCU is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 7. Current flowing only to the LVD circuit. The current value of MCU is the sum of IDD1, IDD2 or IDD3 and ILVI when the LVD circuit is in operation.
- 8. Current flowing when operates rewriting to Data flash.
- 9. Current flowing when operates flash self-programming.
- 10. Shift time to the SNOOZE mode is referred User's Manual: Hardware.

(Remarks are listed on the next page.)

Remarks 1. fil: Low-speed on-chip oscillator clock frequency

2. fsub: Subsystem clock frequency

3. fclk: CPU and peripheral hardware clock frequency

4. Temperature condition of the TYP. value is T_A = 25°C

2.5.2 RF unit

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Parameter	Symbol			Conditions	MIN.	TYP.	MAX.	Unit
Supply	IDDRFTX	Transmission	Transmission	RF normal mode	-	4.3	5.7	mA
Current Note 1, 2		peak current	output power 0 dBm		-	7.4	9.0	mA
			O dBill	RF low power mode	-	2.6	4.1	mA
					-	4.4	6.0	mA
				RF high performance mode	-	4.3	5.7	mA
					-	7.4	9.0	mA
	IDDRFRX	Reception peal	current	RF normal mode	-	3.5	5.0	mA
					-	6.2	7.5	mA
				RF low power mode	-	3.3	4.8	mA
					-	5.8	7.1	mA
				RF high performance mode	-	3.7	5.2	mA
					-	6.6	7.9	mA
	IDDRFST	STANDBY_RF	current		-	0.40	0.9	mA
					-	0.28	0.8	mA
	IDDRFSL	SLEEP_RF cui	rent		-	0.50	1.1	mA
					-	0.36	8.0	mA
	IDDRFDS	DEEP_SLEEP	current	RF slow clock externally input through	-	0.14	3.6	μΑ
				EXSLK_RF	-	0.14	3.6	μΑ
				RF slow clock from on-chip oscillator	-	1.8	6.8	μΑ
					-	1.8	6.8	μΑ
	IDDRFPD	POWER_DOW	N current		-	0.10	3.0	μΑ
					-	0.10	3.0	μΑ
	IDDRFRS	RESET_RF cu	rrent		-	0.10	3.0	μΑ
					-	0.10	3.0	μΑ
	IDDRFIL	IDLE_RF curre	nt		-	0.50	1.1	mA
					-	0.60	1.1	mA
	Iddresu	SETUP_RF cu	rrent		-	2.5	4.7	mA
					-	3.5	5.0	mA

Notes 1. Total current flowing into VDD_RF, and AVDD_RF.

2 For each item, the values in the upper and lower row apply respectively when the DC/DC converter embedded in the RF chip is and is not in use.

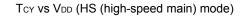
2.6 AC Characteristics

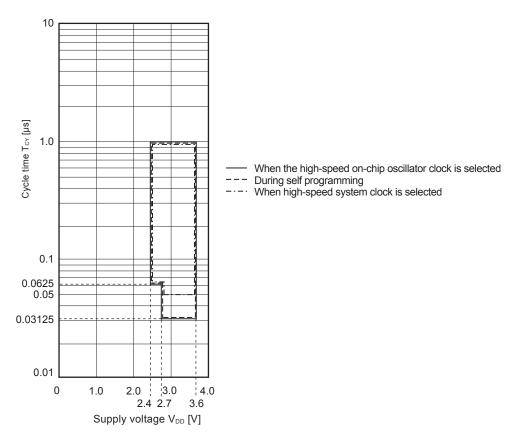
(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Cycle time (minimum instruction	Tcy	Main system	HS (high-speed	2.7 V ≤ V _{DD} ≤ 3.6 V	0.03125		1	μs
execution time)		(fmain) clock	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		operation	LV (low-voltage ma	in) mode	0.25		1	μs
			LS (low-speed main	LS (low-speed main) mode			1	μs
		Subsystem clo	ck (fsuв) operatior	1	28.5	30.5	31.3	μs
		In the self	HS (high-speed	2.7 V ≤ V _{DD} ≤ 3.6 V	0.03125		1	μs
		programming	main) mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		mode	LV (low-voltage ma	in) mode	0.25		1	μs
			LS (low-speed main	n) mode	0.125		1	μs
External clock frequency	fex	EXCLK		2.7 V≤V _{DD} ≤3.6 V	1		20	MHz
				2.4 V ≤ V _{DD} < 2.7 V	1		16	MHz
		1.8 V ≤ V _{DD} < 2.4 V		1		8	MHz	
	fexs	EXCLKS		32		35	kHz	
	fexrf	EXSLK_RF When 32.768 kHz ±500 ppm input		±500 ppm	32.751616	32.768	32.784384	kHz
	When 16.384 kHz ±		±500 ppm	16.375808	16.384	16.392192	kHz	
External clock input high-level	texн,	EXCLK	·	2.7 V ≤ V _{DD} ≤ 3.6 V	24			ns
width, low-level width	texL			2.4 V ≤ V _{DD} < 2.7 V	30			ns
				1.8 V ≤ V _{DD} < 2.4 V	60			ns
	texhs, texhs	EXCLKS			13.7			μs
	texhre,	EXSLK_RF	When 32.768 kHz i	nput	0.08	15.258	32.69	μs
	t exlrf		When 16.384 kHz i	nput	0.08	8.192	16.304	μs
Timer input high-level width, low-level width	tтıн, tтı∟	TI00, TI01, TI0	2, TI03, TI04, TI0	5, TI06, TI07	1/fмск+10			ns
Timer output frequency	t то	TI00, TI01,	HS (high-speed	2.7 V ≤ V _{DD} < 3.6 V			8	MHz
		TI02, TI03,	main) mode	2.4 V ≤ V _{DD} < 2.7 V			4	MHz
		TI04, TI05, TI06, TI07	LV (low-voltage ma	in) mode			4	MHz
		1100, 1107	LS (low-speed main	n) mode			4	MHz
Clock/buzzer output frequency	t PLC	PCLBUZ0	HS (high-speed	2.7 V ≤ V _{DD} < 3.6 V			8	MHz
			main) mode	2.4 V ≤ V _{DD} < 2.7 V			4	MHz
			LV (low-voltage ma	in) mode			4	MHz
			LS (low-speed main	n) mode			4	MHz
	t PCLRF	CLKOUT_RF					16	MHz

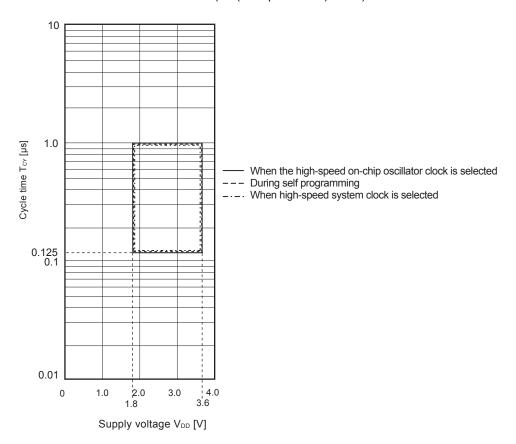
Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn0, CKSmn1 bits of timer mode register mn (TMRmn).

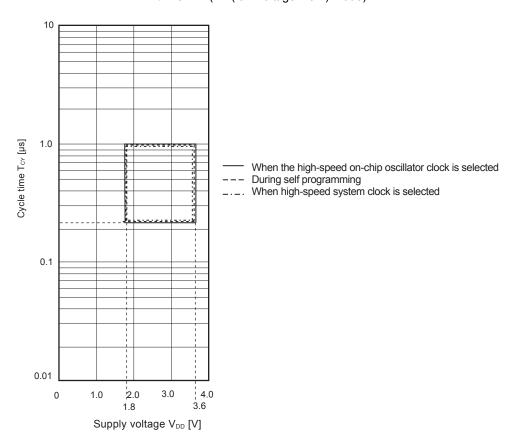

m: Unit number (m = 0, 1), n: Channel number (n = 0 to 7))

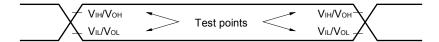


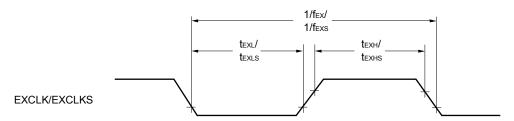
(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V) (2/2)

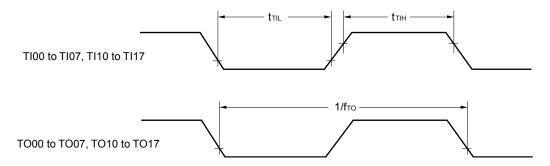

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Interrupt input high-level width, low-level width	tinth, tintl	INTP0, INTP3, INTP5, INTP6	1			μs
External PA control output High- level width	t PAHRF	TXSELH_RF	283			μs
External PA control output low-level width	t PALRF	TXSELL_RF	283			μs
RESET low-level width	trsl	RESET	10			μs
RESET_RF internal pin low-level width	trstlrf	RESET_RF internal pin	31			μs

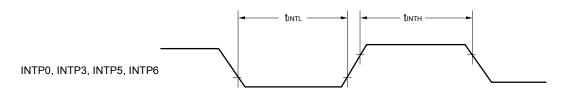
Minimum Instruction Execution Time during Main System Clock Operation

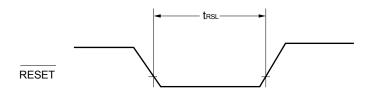



Tcy vs Vdd (LS (low-speed main) mode)

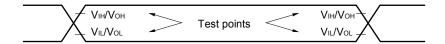

Tcy vs Vdd (LV (low-voltage main) mode)


AC Timing Test Points


External System Clock Timing


TI/TO Timing

Interrupt Request Input Timing



RESET Input Timing

2.7 Peripheral Functions Characteristics

AC Timing Test Points

2.7.1 Serial array unit

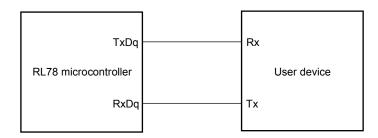
(1) During communication at same potential (UART mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

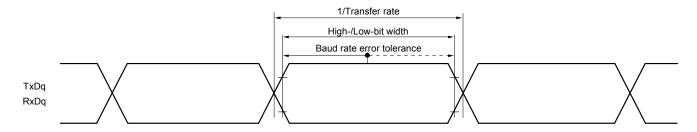
Parameter	Symbol		Conditions	HS (high-speed main) Mode MAX.	LS (low-speed main) Mode MAX.	LV (low-voltage main) Mode MAX.	Unit
Transfer rate Note 1		2.4 V ≤ V _{DD}	≤ 3.6 V	fмск/6	fмск/6	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$	5.3	1.3	0.6	Mbps
		1.8 V ≤ V _{DD}	≤ 3.6 V	_	fмск/6	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		1.3	0.6	Mbps
		1.6 V ≤ V _{DD}	≤ 3.6 V	-	_	fмск/6	bps
			Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2	-	F	0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Maximum operating frequency of CPU and peripheral hardware clock (fclk) is following


HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \leq \text{V}_{DD} \leq 3.6 \text{ V})$

16 MHz (2.4 V \leq V_{DD} \leq 3.6 V)


LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq V_{DD} \leq 3.6 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 only)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq V_{DD} = V_{DD}\text{RF} = AV_{DD}\text{RF} \leq 3.6 \text{ V}, V_{SS} = V_{SS}\text{RF} = AV_{SS}\text{RF} = AV_{SS}\text$
--

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low main)	•	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t KCY1	tkcy1 ≥ 2/fclk	83.3		250		500		ns
SCKp high-/low-level width	tкн1, tкL1		tксү1/2 — 10		tксү1/2 — 50		txcy1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1		33		110		110		ns
SIp hold time (from SCKp↑) Note 1	tksı1		10		10		10		ns
Delay time from SCKp↓ to SOp output Note 2	tkso1	C = 20 pF Note 3		10		10		10	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SCKp and SOp output lines.

Cautions Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
 - 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(3) During communication at same potential (CSI mode) (Internal communication, supporting CSI21 only)

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

Parameter	Symbol	(HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcY1 ≥	2.4 V ≤ V _{DD} ≤ 3.6 V	250		250		500		ns
		2/fclk Note	1.8 V ≤ V _{DD} ≤ 3.6 V —	ı		250		500		ns
			1.6 V ≤ V _{DD} ≤ 3.6 V	_		1		500		ns

Note Use the fclk more than 6.5 MHz and lower than 24 MHz.

Remark This specification is for CSI21 only.

(4) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, supporting CSI00 and CSI20)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \le 3.6 \text{ V}, \text{V}_{SS} = 0.00 \text{ V}$
--

Parameter Symbol		Conditions			peed main) ode	LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/ fc∟к	2.7 V ≤ V _{DD} ≤ 3.6 V	125		500		1000		ns
			2.4 V ≤ V _{DD} ≤ 3.6 V	250		500		1000		ns
			1.8 V ≤ V _{DD} ≤ 3.6 V	_		500		1000		ns
			1.6 V ≤ V _{DD} ≤ 3.6 V	_		-		1000		ns
SCKp high-/low- level width	tkH1, tkL1	2.7 V ≤ V _{DD} ≤ 3.6 V		tксу1/2 — 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V		tксу1/2 — 38		tkcy1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		-		tkcy1/2 - 50		tксү1/2 - 50		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		-		-		tkcy1/2 - 100		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	2.7 V ≤ V _{DD} ≤ 3.6 V		44		110		110		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V		75		110		110		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		_		110		110		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		_		ı		220		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	2.7 V ≤ V _{DD} ≤ 3.6 V		19		19		19		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V		19		19		19		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		_		19		19		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		_		ı		19		ns
Delay time from SCKp↓ to SOp output Note 2	tkso1	C = 30 pF Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V		25		25		25	ns
			2.4 V ≤ V _{DD} ≤ 3.6 V		25		25		25	ns
output			1.8 V ≤ V _{DD} ≤ 3.6 V		_		25		25	ns
			1.6 V ≤ V _{DD} ≤ 3.6 V		_		_		25	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remarks 1.** p: CSI number (p = 00, 10), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1), g: PIM and POM numbers (g = 0, 1)
 - 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n:
 Channel number (mn = 00, 02, 11))

(5) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input, supporting CSI00 and CSI20)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{Vdd} = \text{Vdd}_{RF} = \text{AVdd}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{Vss}_{RF} = \text{AVss}_{RF} = 0 \text{ V})$

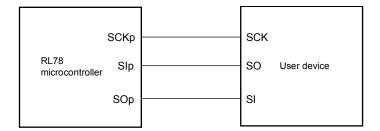
Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-sp	-	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 4	tkcy2	2.7 V ≤ V _{DD} ≤	f _{MCK} > 16 MHz	8/ƒмск		_		_		ns
		3.6 V	fмcк ≤ 16 MHz	6/ƒмск		6/fмск		6/ƒмск		
		2.4 V ≤ V _{DD} ≤ 3.6 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		_		6/fмск and 750		6/fмск and 750		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		-		_		6/fмск and 1500		ns
SCKp high-/low-	tкн2, tкL2	2.7 V ≤ V _{DD} ≤	3.6 V	tkcy2/2-8		tkcy2/2-8		tkcy2/2-8		ns
level width		2.4 V ≤ V _{DD} ≤ 3.6 V		tксү2/2- 18		tксү2/2 – 18		tксү2/2 – 18		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		_		tксү2/2 - 18		tксү2/2 – 18		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		_		-		tксу2/2 - 66		ns
SIp setup time (to SCKp↑) Note 1	tsik2	2.7 V ≤ V _{DD} ≤ 3.6 V		1/fмск +20		1/fмск +30		1/fмcк +30		ns
(to conp ₁)		2.4 V ≤ V _{DD} ≤ 3.6 V		1/fмск +30		1/fмск +30		1/fмcк +30		ns
		1.8 V ≤ V _{DD} s	≤ 3.6 V	_		1/fмск +30		1/fмcк +30		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		_		_		1/fмск +40		ns
SIp hold time (from SCKp↑) Note	tksi2	2.4 V ≤ V _{DD} ≤ 3.6 V		1/fмск +31		1/fмск +31		1/fмск +31		ns
		1.8 V ≤ V _{DD} ≤ 3.6 V		_		1/fмск +31		1/fмск +31		ns
		1.6 V ≤ V _{DD} ≤ 3.6 V		_		_		1/fмск +250		ns
Delay time from SCKp↓ to SOp output Note 2	tkso2	Note 3	2.7 V ≤ V _{DD} ≤ 3.6 V		2/f _{мск} + 44		2/f _{MCK} + 110		2/fмск+ 110	ns
			2.4 V ≤ V _{DD} ≤ 3.6 V		2/f _{мск} + 75		2/f _{MCK} + 110		2/f _{MCK} + 110	ns
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 3.6 \text{ V}$		-		2/f _{MCK} + 110		2/f _{MCK} + 110	ns
			$1.6~\text{V} \le \text{V}_{\text{DD}} \le 3.6~\text{V}$		-		-		2/f _{мск} + 220	ns

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SOp output lines.
 - 4. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

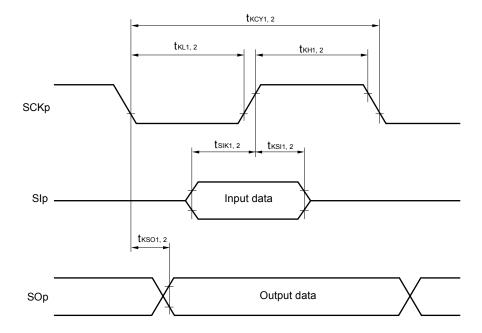
(Caution and Remarks are listed on the next page.)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

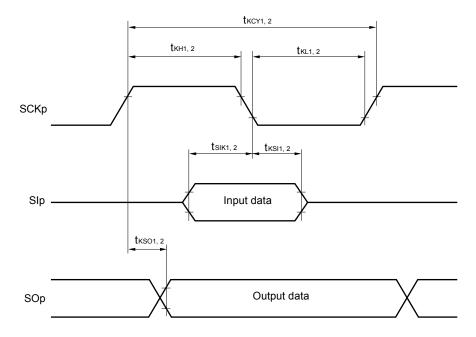
Remarks 1. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1),


n: Channel number (n = 0), g: PIM and POM numbers (g = 1)

2. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 10))


CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remarks 1. p: CSI number (p = 00, 10, 21)

2. m: Unit number, n: Channel number (mn = 00, 02, 11)

(6) During communication at same potential (simplified I^2C mode) (1/2)

(TA = -40 to +85°C, 1.6 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

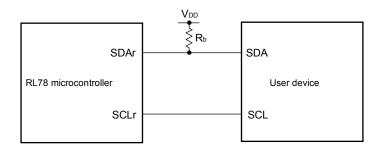
Parameter	Symbol	Conditions	` `	h-speed Mode	`	v-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$		400 Note 1		400 Note 1		400 Note 1	kHz
		$1.8 \text{ V} ≤ \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}Ω$		-		400 Note 1		400 Note 1	kHz
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		300 Note 1		300 Note 1		300 Note 1	kHz
		$1.8 \text{ V} ≤ \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}Ω$		-		300 Note 1		300 Note 1	kHz
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$		-		-		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V, $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	-		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		1.8 V ≤ V _{DD} < 2.7 V, $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		1550		1550		ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		-		1850		ns
Hold time when SCLr = "H"	t HIGH	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1150		1150		1150		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	-		1150		1150		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	1550		1550		1550		ns
		$1.8 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		1550		1550		ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-		-		1850		ns

(Notes, Caution, and Remarks are listed on the page after the next page.)

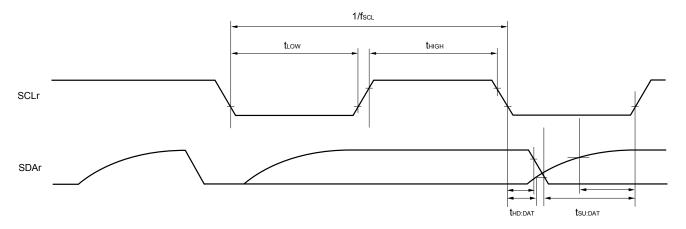
(6) During communication at same potential (simplified I²C mode) (2/2)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high	h-speed Mode	,	/-speed Mode	`	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 85 Note2		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		2.4 V ≤ V _{DD} ≤ 3.6 V, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 145 Note2		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		1.8 V ≤ V _{DD} < 3.6 V, C _b = 100 pF, R _b = 3 kΩ	-		1/fmck + 145 Note2		1/f _{MCK} + 145 Note2		ns
		2.4 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	1/fmck + 230 Note2		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		1.8 V ≤ V _{DD} < 2.7 V, C _b = 100 pF, R _b = 5 kΩ	-		1/fmck + 230 Note2		1/fmck + 230 Note2		ns
		1.6 V \leq V _{DD} $<$ 1.8 V, C _b = 100 pF, R _b = 5 kΩ	-		-		1/f _{MCK} + 290 Note2		ns
Data hold time (transmission)	thd:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		2.4 V \leq V _{DD} \leq 3.6 V, C _b = 100 pF, R _b = 3 kΩ	0	355	0	355	0	355	ns
		1.8 V \leq V _{DD} $<$ 3.6 V, C _b = 100 pF, R _b = 3 kΩ	-	-	0	355	0	355	ns
		2.4 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	0	405	0	405	0	405	ns
		1.8 V \leq V _{DD} $<$ 2.7 V, C _b = 100 pF, R _b = 5 kΩ	_	_	0	405	0	405	ns
		$1.6 \text{ V} \le \text{V}_{DD} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	-	-	-	-	0	405	ns


Notes 1. The value must also be fmck/4 or lower.

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(Remarks are listed on the next page.)

^{2.} Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Simplified I²C mode mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. R_b[Ω]:Communication line (SDAr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance

- 2. r: IIC number (r = 00, 20), g: PIM number (g =1), h: POM number (h = 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clockw to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0), mn = 00, 02)

(7) Communication at different potential (1.8 V, 2.5 V) (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{Vss}_{RF} = \text{AVss}_{RF} = 0 \text{ V})$

Parameter	Symbol			Conditions	HS (high-speed main) Mode	LS (low-speed main) Mode	LV (low-voltage main) Mode	Unit
					MAX.	MAX.	MAX.	
Transfer		Reception	2.7 V	\leq V _{DD} \leq 3.6 V, 2.3 V \leq V _b \leq 2.7 V	fмск/6 Note 1	fмск/6 Note 1	fmck/6 Note 1	bps
rate				Theoretical value of the maximum transfer rate fmck = fclk Note 3	5.3	1.3	0.6	Mbps
			2.4 V	≤ V _{DD} ≤ 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	fмск/6 Note 1	fmck/6 Note 1	fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3	2.6	1.3	0.6	Mbps
			1.8 V	\leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V	-	fmck/6 Notes 1, 2	fmck/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate fmck = fclk Note 3	-	1.3	1.3	Mbps
		Transmission	2.7 V	≤ V _{DD} ≤ 3.6 V, 2.3 V ≤ V _b ≤ 2.7 V	Note 4	Note 4	Note 4	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$	1.2 Note 5	1.2 Note 5	1.2 Note 5	Mbps
			2.4 V	≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	Notes 2, 6	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	0.43	0.43	0.43	Mbps
			1.8 V	≤ V _{DD} < 3.3 V, 1.6 V ≤ V _b ≤ 2.0 V	-	Notes 2, 6	Notes 2, 6	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$	_	0.43 Notes 7	0.43 Notes 7	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with $V_{DD} \ge V_b$.

3. Maximum operating frequency of CPU and peripheral hardware clock (fclk) is following

HS (high-speed main) mode: 32 MHz (2.7 V ≤ V_{DD} ≤ 3.6 V)

16 MHz (2.4 V \leq V_{DD} \leq 3.6 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 3.6 V) LV (low-voltage main) mode: 4 MHz (1.8 V \leq V_{DD} \leq 3.6 V)

4. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V ≤ V_{DD} ≤ 3.6 V and 2.3 V ≤ Vb ≤ 2.7 V

Maximum transfer rate = $1/{-Cb \times Rb \times ln (1 - 2.0/Vb)} \times 3 [bps]$

Baud rate error (theoretical value) =

 $(1/transfer\ rate \times 2 - \{-Cb \times Rb \times ln\ (1 - 2.0/Vb)\} / (1/transfer\ rate) \times number\ of\ transferred\ bits)$

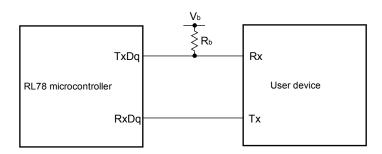
- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **5.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- **6.** The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8V ≤ V_{DD} < 3.3 V and 1.6 V ≤ V_D ≤ 2.0 V

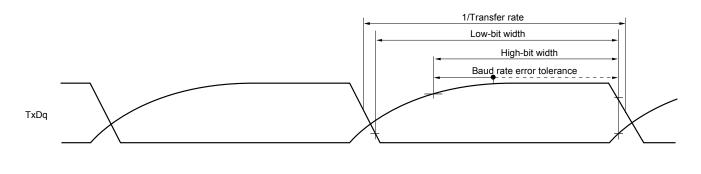
Maximum transfer rate = $1/{-Cb \times Rb \times ln (1 - 1.5/Vb)} \times 3 [bps]$ Baud rate error (theoretical value) =

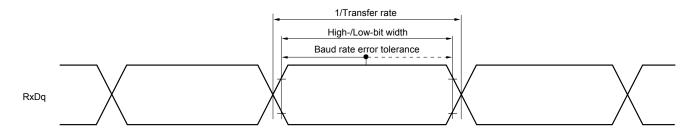
 $(1/transfer\ rate \times 2 - \{-Cb \times Rb \times ln\ (1 - 1.5/Vb)\} / (1/transfer\ rate) \times number\ of\ transferred\ bits)$

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.


Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VIL, see the DC characteristics with TTL input buffer selected.

 $\textbf{Remarks 1.} \quad R_b[\Omega] : Communication line (TxDq) \ pull-up \ resistance,$


C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage


- 2. q: UART number (q = 0, 1), g: PIM and POM numbers (g = 0, 1)
- fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00 to 03))

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks1. $R_b[\Omega]$: Communication line (TxDq) pull-up resistance, $V_b[V]$: Communication line voltage

2. q: UART number (q = 0, 1), g: PIM and POM number (g = 0, 1)

(8) Communication at different potential (2.5 V) (CSI mode) (master mode: SCKp... internal clock output, supporting CSI00 only)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq V_{DD} = V_{DD_RF} = AV_{DD_RF} \leq 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high	•	LS (low main)	•	LV (low- main)		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t ксү1	$t_{KCY1} \ge 2/f_{CLK}$ $2.7 \ V \le V_{DD} \le 3.6 \ V$ $2.3 \ V \le V_b \le 2.7 \ V$ $C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega$	300		1150		1150		ns
SCKp high-level width	tкн1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	tkcy1/2 – 120		tксу1/2 — 120		tксү1/2 — 120		ns
SCKp low-level width	t _{KL1}	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	tксу1/2 — 10		tксу1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1	tsıkı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	121		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksii	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		130		130		130	ns
SIp setup time (to SCKp↓) Note 2	tsıĸı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksi1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 20 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$		10		10		10	ns

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),
 g: PIM and POM number (g = 1)
 - fmcx: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(9) Communication at different potential (1.8 V, 2.5 V) (CSI mode: master mode, SCKp... internal clock output)

$$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$$
 (1/2)

Parameter	Symbol	mbol Conditions			h-speed Mode	LS (low main)	•	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	500		1150		1150		ns
			$2.4 \ V \le V_{DD} < 3.3 \ V$ $1.6 \ V \le V_b \le 2.0 \ V$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	1150		1150		1150		ns
			$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 3}} \\ &C_{b} = 30 \text{ pF}, \text{ R}_{b} = 5.5 \text{ k}\Omega \end{aligned}$	-		1150		1150		ns
SCKp high-level width Note 1	t кн1		$p \le 3.6 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V}$, $R_b = 2.7 \text{ k}\Omega$	tксү1/2- 170		tксү1/2- 170		tксү1/2- 170		ns
			$_{0}$ < 3.3 V, 1.6 V ≤ V $_{b}$ ≤ 2.0 V , $_{1}$, $_{2}$ R $_{b}$ = 5.5 k $_{2}$	tксү1/2- 458		tксү1/2- 458		tксү1/2- 458		ns
		3	$_{0}$ < 3.3 V, 1.6 V ≤ V $_{b}$ ≤ 2.0 V $_{0}$ Note $_{0}$, $_{0}$ R $_{0}$ = 5.5 k $_{0}$	-		tксү1/2 – 458		tксү1/2 — 458		ns
SCKp low-level width Note 1	t _{KL1}		$0 \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$, $R_b = 2.7 \text{ k}\Omega$	tксү1/2 — 18		tксү1/2 — 50		tксү1/2 — 50		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$, $R_b = 5.5 \text{ k}\Omega$	tксү1/2 — 50		tксү1/2 — 50		tксү1/2 — 50		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note 3}}$, $R_b = 5.5 \text{ k}\Omega$	_		tксү1/2 — 50		tксү1/2 — 50		ns
SIp setup time (to SCKp↑) Note 1,	tsıĸ1		$0 \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$, $R_b = 2.7 \text{ k}Ω$	177		479		479		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$, $R_b = 5.5 \text{ k}Ω$	479		479		479		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note 3}}$, $R_b = 5.5 \text{ k}Ω$	-		479		479		ns
SIp hold time (from SCKp↑) Note 1, 2	tksii		$0 \le 3.6 \text{ V}, 2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$, $R_b = 2.7 \text{ k}Ω$	19		19		19		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$, $R_b = 5.5 \text{ k}Ω$	19		19		19		ns
			$0 < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}^{\text{Note 3}}$, $R_b = 5.5 \text{ k}Ω$	_		19		19		ns

Notes 1. Supporting CSI00 and CSI20.

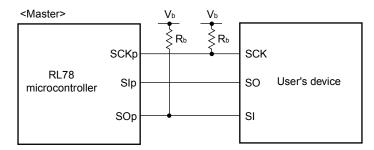
- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 3. Use it with $V_{DD} \ge V_b$.

(Caution are listed on the next page.)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

(2/2)

Parameter	Symbol	Conditions		h-speed Mode	, ,	peed main) ode		-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Delay time from SCKp↓ to SOp output Note 1, 3	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		195		195		195	ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$		483		483		483	ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega \end{aligned}$		_		483		483	ns
SIp setup time (to SCKp↓) Note 2, 4	tsıkı	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	44		110		110		ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ 1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V} \\ C_{b} = 30 \text{ pF}, \text{ R}_{b} = 5.5 \text{ k}\Omega$	110		110		110		ns
		$\begin{aligned} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_b \leq 2.0 \ V^{\text{Note 5}} \\ C_b &= 30 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{aligned}$	-		110		110		ns
SIp hold time (from SCKp↓) Note 2, 4	tksi1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	19		19		19		ns
		$2.4 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}$ $C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega$	19		19		19		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, \text{ R}_{b} = 5.5 \text{ k}\Omega \end{aligned}$	ı		19		19		ns
Delay time from SCKp↑ to SOp output Note 2, 4	tkso1	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		25		25		25	ns
		$2.4 \ V \le V_{DD} < 3.3 \ V$ $1.6 \ V \le V_b \le 2.0 \ V$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$		25		25		25	ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{DD} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}^{\text{Note 5}} \\ &C_{b} = 30 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega \end{aligned}$		_		25		25	ns

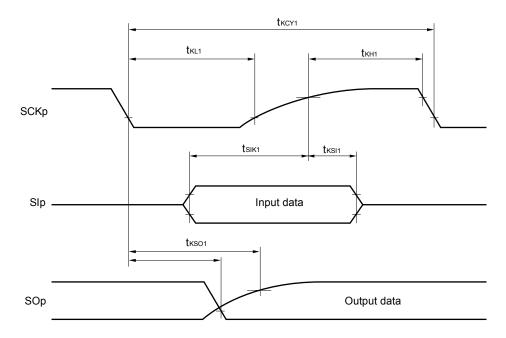

Notes 1. Supporting CSI00 and CSI20.

- 2. Supporting CSI00 only.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 4. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. Use it with $V_{DD} \ge V_b$.

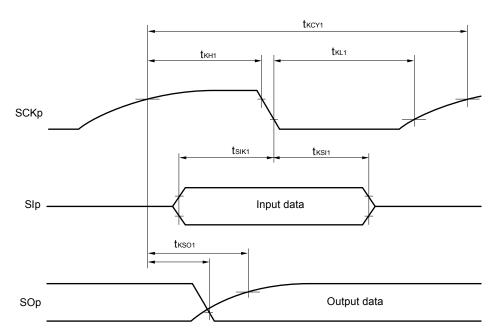
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)



- **Remarks 1.** $R_b[\Omega]$:Communication line (SCKp, SOp) pull-up resistance, $C_b[F]$: Communication line (SCKp, SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)
 - 3. fmck: Operation clock frequency of the serial array unit


 (Operation clock to be set by the CKSmn bit of the serial mode register mn (SMRmn).

 m: Unit number, n: Channel number (mn = 00))

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(10) Communication at different potential (1.8 V, 2.5 V) (CSI mode) (slave mode, SCKp... external clock input)

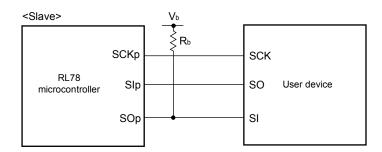
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD}_{RF} = AV_{DD}_{RF} \le 3.6 \text{ V}, V_{SS} = V_{SS}_{RF} = AV_{SS}_{RF} = 0 \text{ V})$ (1/2)

Parameter	Symbol	Co	onditions		h-speed Mode	,	/-speed Mode	LV (low main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkCY2	2.7 V ≤ V _{DD} ≤ 3.6 V 2.3 V ≤ V _b ≤ 2.7 V	24 MHz < fмск	20/ fмск		_		_		ns
			20 MHz < f _{MCK} ≤ 24 MHz	16/ fмск		_		-		ns
			16 MHz < fмcк ≤ 20 MHz	14/ fмск		_		-		ns
			8 MHz < fмcк ≤ 16 MHz	12/ fмск		ı		-		ns
			4 MHz < f _{MCK} ≤ 8 MHz	8/fмск		16/ fмск		_		ns
			fмcк ≤ 4MHz	6/ƒмск		10/ fмск		10/ f мск		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	24 MHz < fmck	48/ fмск		-		_		ns
			20 MHz < fmck ≤ 24 MHz	36/ fмск		1		_		ns
			16 MHz < fмcк ≤ 20 MHz	32/ fмск		_		-		ns
			8 MHz < f _{MCK} ≤ 16 MHz	26/ fмск		-		_		ns
			4 MHz < fmck ≤ 8 MHz	16/ f мск		16/ f мск		-		ns
			fмcк ≤ 4MHz	10/ f мск		10/ fмск		10/ f мск		ns
		1.8 V ≤ V _{DD} < 3.3 V	24 MHz < fмск	_		-		_		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	20 MHz < fмcк ≤ 24 MHz	_		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	_		-		_		ns
			8 MHz < fмcк ≤ 16 MHz	_		-		_		ns
			4 MHz < fmck ≤ 8 MHz	-		16/ fмск		-		ns
			fмcк ≤ 4MHz	_		10/ fмск		10/ fмск		ns

(Notes and Caution are listed on the next page.)

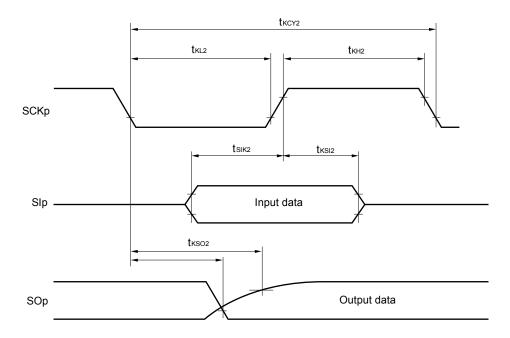
$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

(2/2)

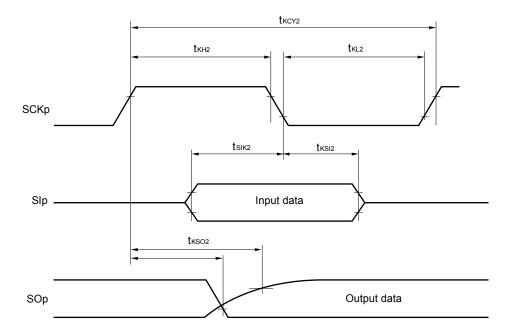

Parameter	Symbol	Conditions	HS (high	•	1 .	peed main) ode	LV (low- main)	_	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp high-/low-level width	tкн2, tкL2	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	tkcy2/2 – 18		tkcy2/2 – 50		txcy2/2 — 50		ns
		2.4 V ≤ V _{DD} < 3.3 V 1.6 V ≤ V _b ≤ 2.0 V	tkcy2/2 – 50		tkcy2/2 – 50		txcy2/2 - 50		ns
		1.8 $V \le V_{DD} < 3.3 V$ 1.6 $V \le V_b \le 2.0 V^{Note 2}$	-		txcy2/2 – 50		tkcy2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsik2	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	1/f _{MCK} + 20		1/f _{MCK} + 30		1/f _{MCK} + 30		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	1/f _{MCK} + 30		1/f _{MCK} + 30		1/fмск + 30		ns
		1.8 $V \le V_{DD} < 3.3 V$ 1.6 $V \le V_b \le 2.0 V^{\text{Note 2}}$	_		1/f _{MCK} + 30		1/fmck + 30		ns
SIp hold time (from SCKp↑) Note 3	tksı2	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$	1/fмск + 31		1/f _{MCK} + 31		1/f _{MCK} + 31		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	1/f _{MCK} + 31		1/f _{MCK} + 31		1/f _{MCK} + 31		ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V ^{Note 2}	1		1/f _{MCK} + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp output Note 4	tkso2	$2.7 \text{ V} \le \text{V}_{DD} < 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		2/f _{MCK} + 214		2/f _{MCK} + 573		2/f _{MCK} + 573	ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}Ω$		2/f _{MCK} + 573		2/f _{MCK} + 573		2/f _{MCK} + 573	ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} \\ &C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$		-		2/fмск + 573		2/fмск + 573	ns

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. Use it with $V_{DD} \ge V_b$.
- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VH and VL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- Remarks 1. $R_b[\Omega]$:Communication line (SOp) pull-up resistance, $C_b[F]$: Communication line (SOp) load capacitance, $V_b[V]$: Communication line voltage
 - 2. p: CSI number (p = 00, 20), m: Unit number, n: Channel number (mn = 00, 10), g: PIM and POM number (g = 0, 1)
 - 3. fmck: Serial array unit operation clock frequency(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 1)

(11) Communication at different potential (1.8 V, 2.5 V) (simplified I^2C mode)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V})$

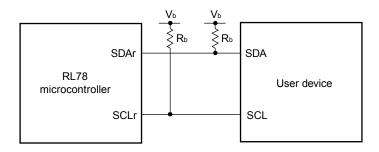
(1/2)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	`	v-speed Mode	,	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		1000 Note 1		300 Note 5		300 Note 5	kHz
		$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_b \le 2.7 \text{ V}$ $C_b = 100 \text{ pF}, R_b = 2.7 \text{ k}\Omega$		400 Note 1		300 Note 5		300 Note 5	kHz
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω		300 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} 1.8 \ V &\leq V_{DD} < 3.3 \ V \\ 1.6 \ V &\leq V_{b} \leq 2.0 \ V^{Note 2} \\ C_{b} &= 100 \ pF, \ R_{b} = 5.5 \ k \Omega \end{aligned}$		-		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	475		1550		1550		ns
		2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 100 pF, R _b = 2.7 k Ω	1150		1550		1550		ns
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω	1150		1550		1550		ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V Note 2 C _b = 100 pF, R _b = 5.5 k Ω	-		1550		1550		ns
Hold time when SCLr = "H"	tнісн	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	200		610		610		ns
		$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_{b} = 100 \text{ pF}, R_{b} = 2.7 \text{ k}\Omega$	600		610		610		ns
		$2.4 \text{ V} \le \text{V}_{DD} < 3.3 \text{ V}$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$ $C_b = 100 \text{ pF}, R_b = 5.5 \text{ k}\Omega$	610		610		610		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V} \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note 2}} \\ &C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	_		610		610		ns

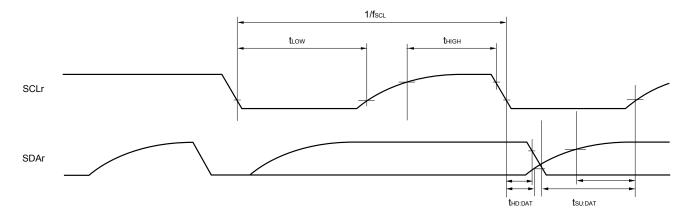
(Note, Caution and Remarks are listed on the next page.)

(TA = -40 to +85°C, 1.8 V \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

(2/2)


Parameter	Symbol	Conditions	HS (high	h-speed Mode	· `	/-speed Mode	LV (low- main)	•	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/f _{MCK} + 135 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 100 pF, R _b = 2.7 k Ω	1/f _{MCK} + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω	1/f _{MCK} + 190 Note 3		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _D \leq 2.0 V ^{Note 2} C _b = 100 pF, R _b = 5.5 k Ω	-		1/fмск + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:DAT	$2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	O Note 4	305	O Note 4	305	O Note 4	305	ns
		2.7 V \leq V _{DD} \leq 3.6 V 2.3 V \leq V _b \leq 2.7 V C _b = 100 pF, R _b = 2.7 k Ω	O Note 4	355	O Note 4	355	O Note 4	355	ns
		2.4 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V C _b = 100 pF, R _b = 5.5 k Ω	O Note 4	405	O Note 4	405	O Note 4	405	ns
		1.8 V \leq V _{DD} $<$ 3.3 V 1.6 V \leq V _b \leq 2.0 V ^{Note 2} C _b = 100 pF, R _b = 5.5 k Ω	-	-	O Note 4	405	O Note 4	405	ns

Notes 1. The value must also be fmck/4 or lower.


- 2. Use it with $V_{DD} \ge V_b$.
- 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remarks 1. R_b[Ω]:Communication line (SDAr, SCLr) pull-up resistance, C_b[F]: Communication line (SDAr, SCLr) load capacitance, V_b[V]: Communication line voltage

- **2.** r: IIC number (r = 00, 10), g: PIM, POM number (g = 0, 1)
- 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 02))

2.7.2 Serial interface IICA

(1) I²C standard mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V})$

Parameter	Symbol	Co	onditions	, ,	h-speed		v-speed Mode	,	-voltage Mode	Unit
				MIN.	Mode MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Standard	2.7 V ≤ V _{DD} ≤ 3.6 V	0	100	0	100	0	100	kHz
OCEAO GIOCK Trequency	ISCL	mode:	2.4 V ≤ V _{DD} ≤ 3.6 V	0	100	0	100	0	100	kHz
		fc∟k≥ 1 MHz	1.8 V ≤ V _{DD} ≤ 3.6 V		_ 100	0	100	0	100	kHz
						U	100	0		
Catua time of restart	4	2.7 V ≤ V _{DD} ≤ 3.6	1.6 V ≤ V _{DD} ≤ 3.6 V	4.7	_	4.7	<u> </u>	4.7	100	kHz
Setup time of restart condition	t su:sta	$2.4 \text{ V} \leq \text{VDD} \leq 3.6$ $2.4 \text{ V} \leq \text{VDD} \leq 3.6$		4.7		4.7				μs
			-	4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
Note 1		1.6 V ≤ V _{DD} ≤ 3.6		10	_	4.0	- 	4.7		μs
Hold time ^{Note 1}	thd:sta	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			_	-	- I	4.0		μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
_		2.4 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 3.6		-	<u> </u>		- 	4.7		μs
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			<u> </u>		- I	4.0		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤ 3.0		250		250		250		ns
(redepation)		2.4 V ≤ V _{DD} ≤ 3.6		250		250		250		ns
		1.8 V ≤ V _{DD} ≤ 3.6			_	250		250		ns
		1.6 V ≤ V _{DD} ≤ 3.6	-		_		- I .	250		ns
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ V _{DD} ≤ 3.6		0	3.45	0	3.45	0	3.45	μs
(transmission)		2.4 V ≤ V _{DD} ≤ 3.6		0	3.45	0	3.45	0	3.45	μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	0	3.45	0	3.45	μs
		1.6 V ≤ V _{DD} ≤ 3.6			-	-	- I	0	3.45	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
Condition		2.4 V ≤ V _{DD} ≤ 3.6		4.0		4.0		4.0		μs
		1.8 V ≤ V _{DD} ≤ 3.6	-		_	4.0		4.0		μs
		1.6 V ≤ V _{DD} ≤ 3.6			_	-	- I	4.0		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 3.6		4.7		4.7		4.7		μs
		2.4 V ≤ V _{DD} ≤ 3.6	6 V	4.7		4.7		4.7		μs
		1.8 V ≤ V _{DD} ≤ 3.6			_	4.7		4.7		μs
		1.6 V ≤ V _{DD} ≤ 3.6	6 V		_	-	_	4.7		μs

(Notes, Caution and Remark are listed on the next page.)

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Standard mode: $C_b = 400 \text{ pF}$, $R_b = 2.7 \text{ k}\Omega$

(2) I²C fast mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Cor	nditions	, ,	h-speed Mode	`	v-speed Mode		-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	2.7 V ≤ V _{DD} ≤ 3.6 V	0	400	0	400	0	400	kHz
		fc∟κ ≥ 3.5 MHz	2.4 V ≤ V _{DD} ≤ 3.6 V	0	400	0	400	0	400	kHz
			1.8 V ≤ V _{DD} ≤ 3.6 V		_	0	400	0	400	kHz
Setup time of restart	tsu:sta	2.7 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
condition		2.4 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
		1.8 V ≤ V _{DD} ≤ 3.6 V			_	0.6		0.6		μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ V _{DD} ≤ 3.6	2.7 V ≤ V _{DD} ≤ 3.6 V			0.6		0.6		μs
		2.4 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
		1.8 V ≤ V _{DD} ≤ 3.6 V			_	0.6		0.6		μs
Hold time when SCLA0 =	tLOW	2.7 V ≤ V _{DD} ≤ 3.6	V	1.3		1.3		1.3		μs
"L"		2.4 V ≤ V _{DD} ≤ 3.6	V	1.3		1.3		1.3		μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	1.3		1.3		μs
Hold time when SCLA0 =	t HIGH	2.7 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
"H"		2.4 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	0.6		0.6		μs
Data setup time	tsu:dat	2.7 V ≤ V _{DD} ≤ 3.6	V	100		100		100		μs
(reception)		2.4 V ≤ V _{DD} ≤ 3.6	V	100		100		100		μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	100		100		μs
Data hold time	thd:dat	2.7 V ≤ V _{DD} ≤ 3.6	V	0	0.9	0	0.9	0	0.9	μs
(transmission)Note 2		2.4 V ≤ V _{DD} ≤ 3.6	V	0	0.9	0	0.9	0	0.9	μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	0	0.9	0	0.9	μs
Setup time of stop	tsu:sto	2.7 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
condition		2.4 V ≤ V _{DD} ≤ 3.6	V	0.6		0.6		0.6		μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	0.6		0.6		μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 3.6	V	1.3		1.3		1.3		μs
		2.4 V ≤ V _{DD} ≤ 3.6	V	1.3		1.3		1.3		μs
		1.8 V ≤ V _{DD} ≤ 3.6	V		_	1.3		1.3		μs

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

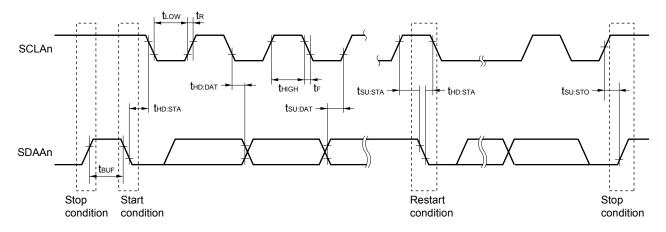
Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

(3) I²C fast mode plus

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \leq \text{V}_{DD} =$	VDD RF = AVDD RF ≤ 3.6 V. Vss =	$V_{SS RF} = AV_{SS RF} = 0 V$

Parameter	Symbol	Cor	Conditions		h-speed Mode		v-speed Mode	`	LV (low-voltage main) Mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode plus: fclk ≥ 10 MHz	2.7 V ≤ V _{DD} ≤ 3.6 V	0	1000	-	_	-	_	kHz
Setup time of restart condition	tsu:sta	2.7 V ≤ V _{DD} ≤ 3.6 °	7 V ≤ V _{DD} ≤ 3.6 V			_		-	-	μs
Hold time ^{Note 1}	thd:STA	2.7 V ≤ V _{DD} ≤ 3.6 °	7 V ≤ V _{DD} ≤ 3.6 V			_		-	-	μs
Hold time when SCLA0 = "L"	tLOW	2.7 V ≤ V _{DD} ≤ 3.6 °	2.7 V ≤ V _{DD} ≤ 3.6 V			-		-		μs
Hold time when SCLA0 = "H"	t HIGH	2.7 V ≤ V _{DD} ≤ 3.6	2.7 V ≤ V _{DD} ≤ 3.6 V			-		-		μs
Data setup time (reception)	tsu:dat	2.7 V ≤ V _{DD} ≤ 3.6	V	50		-	_	-	_	μs
Data hold time (transmission) ^{Note 2}	thd:dat	2.7 V ≤ V _{DD} ≤ 3.6	V	0	0.45	-	-	-	-	μs
Setup time of stop condition	tsu:sto	2.7 V ≤ V _{DD} ≤ 3.6	2.7 V ≤ V _{DD} ≤ 3.6 V			-	_	-	-	μs
Bus-free time	t BUF	2.7 V ≤ V _{DD} ≤ 3.6	V	0.5		-	_	-	-	μs


Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of thd:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: $C_b = 120 \text{ pF}$, $R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0

2.8 Analog Characteristics

2.8.1 A/D converter characteristics

A/D convertor characteristics category

Reference voltage Input channel	Ref. voltage(+) = AV _{REFP} Ref. voltage(-) = AV _{REFM}	Ref. voltage(+) = V _{DD} Ref. voltage(-) = V _{SS}	Ref. voltage(+) = V _{BGR} Ref. voltage(-) = AV _{REFM}
ANI0	-	Refer to 2.8.1 (3)	Refer to 2.8.1 (4)
ANI1			-
ANI2, ANI3	Refer to 2.8.1 (1)		Refer to 2.8.1 (4)
ANI16 to ANI19	Refer to 2.8.1 (2)		
Internal reference voltage, Temperature sensor output voltage	Refer to 2.8.1 (1)		-

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target : ANI2, ANI3, Internal reference voltage, Temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V ≤ AVREFP ≤ VDD = VDD_RF = AVDD_RF ≤ 3.6 V, Vss = Vss_RF = AVss_RF = 0 V, Reference voltage

(+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4		1.2	±7.0	LSB
Conversion time	tcony	10-bit resolution	2.7 V ≤ AV _{REFP} ≤ 3.6 V	3.1875		39	μs
			1.8 V ≤ AV _{REFP} ≤ 3.6 V	17		39	μs
			1.6 V ≤ AV _{REFP} ≤ 3.6 V	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.50	%FSR
Full-scale errorNotes 1, 2	Ers	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±2.5	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±5.0	LSB
Differential linearity error	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±1.5	LSB
Note 1		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±2.0	LSB
Analog input voltage	Vain	ANI2, ANI3		0		AVREFP	٧
		Select internal reference voltage 2.4 V ≤ V _{DD} ≤ 3.6 V, HS (high-speed main) mode			V _{BGR} Note 5		
		Select temperature sensor		V _{TMPS25} Note 5			V

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AVREFP < VDD, MAX. value is following.

Overall error: ±1 LSB is added to the MAX. value of AVREFP = VDD.

Zero-scale error / Full-scale error: ± 0.05 %FSR is added to the MAX. value of AVREFP = VDD.

Integral linearity error / Differential linearity error: ±0.5 LSB is added to the MAX. value of AVREFP = VDD.

- 4. When the the conversion time is set to 57 μs (min.) and 95 μs (max.).
- 5. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target : ANI16 to ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \leq \text{AV}_{\text{REFP}} \leq \text{V}_{\text{DD}} = \text{V}_{\text{DD}_\text{RF}} = \text{AV}_{\text{DD}_\text{RF}} \leq 3.6 \text{ V}, \ \text{V}_{\text{SS}} = \text{V}_{\text{SS}_\text{RF}} = \text{AV}_{\text{SS}_\text{RF}} = 0 \text{ V}, \ \text{Reference voltage} = 1.0 \text{ V}$

(+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	(Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V		1.2	±5.0	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4		1.2	±8.5	LSB
Conversion time	Tcony	10-bit resolution	2.7 V ≤ V _{DD} ≤ 3.6 V	3.1875		39	μs
			1.8 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
			1.6 V ≤ AV _{REFP} ≤ 3.6 V	57		95	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.35	%FSR
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution AV _{REFP} = V _{DD} Note 3	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±0.35	%FSR
			1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±0.60	%FSR
Integral linearity errorNote 1	ILE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±3.5	LSB
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±6.0	LSB
Differential linearity error Note	DLE	10-bit resolution	1.8 V ≤ AV _{REFP} ≤ 3.6 V			±2.0	LSB
1		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AV _{REFP} ≤ 3.6 V Note 4			±2.5	LSB
Analog input voltage	VAIN			0		AVREFP	V
						and V _{DD}	

- **Notes 1.** Excludes quantization error $(\pm 1/2 LSB)$.
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - **3.** When AVREFP < VDD, MAX. value is following.

Overall error: ± 4 LSB is added to the MAX. value of AVREFP = VDD. Zero-scale error / Full-scale error: ± 0.2 %FSR is added to the MAX. value of AVREFP = VDD. Integral linearity error / Differential linearity error: ± 2 LSB is added to the MAX. value n of AVREFP = VDD.

4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), conversion target : ANI0 to ANI3, ANI16 to ANI19, Internal reference voltage, Temperature sensor output voltage

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V}, Reference voltage (+) = V_{DD}, Reference voltage (-) = V_{SS})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V		1.2	±7.0	LSB
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3		1.2	±10.5	LSB
Conversion time	Tcony	10-bit resolution	2.7 V ≤ V _{DD} ≤ 3.6 V	3.1875		39	μs
		conversion	1.8 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
	ANI3, ANI16 to ANI19 10-bit resolution conversion target: Internal reference voltage, Temperature	•	1.6 V ≤ V _{DD} ≤ 3.6 V	57		95	μs
		2.7 V ≤ V _{DD} ≤ 3.6 V	3.5635		39	μs	
		sensor output voltage (HS (high- speed main) Mode)	2.7 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±0.85	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±0.60	%FSR
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±0.85	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±4.0	LSB
			1.6 V ≤ V _{DD} ≤ 3.6 V Note 3			±6.5	LSB
Differential linearity error Note	DLE	10-bit resolution	1.8 V ≤ V _{DD} ≤ 3.6 V			±2.0	LSB
1			1.6 V ≤ V _{DD} ≤ 3.6 V ^{Note 3}			±2.5	LSB
Analog input voltage	Vain	ANI0 to ANI3, ANI	16 to ANI19	0		V _{DD}	V
		Select internal refe 2.4 V ≤ V _{DD} ≤ 3.6 \	erence voltage /, HS (high-speed main) mode	V _{BGR} Note 4			V
		Select temperature sensor output voltage 2.4 V \leq V _{DD} \leq 3.6 V, HS (high-speed main) mode		\	V		

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When the the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
 - 4. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics

<R>

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), conversion target : ANI0 to ANI3, ANI16 to ANI19

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \le 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{BGR}^{Note 3}, \text{Reference voltage (-)} = \text{AV}_{REFM}^{Note 4} = 0 \text{ V}, \text{HS}_{(high-speed main) mode)}$

Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	Tcony	8-bit resolution	2.4 V ≤ V _{DD} ≤ 3.6 V	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution	2.4 V ≤ V _{DD} ≤ 3.6 V			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 3.6 V			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	2.4 V ≤ V _{DD} ≤ 3.6 V			±1.0	LSB
Analog input voltage	VAIN			0		V _{BGR} Note 3	V

- Notes 1. Excludes quantization error (±1/2 LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. Refer to 2.8.2 Temperature sensor and internal reference voltage characteristics.
 - 4. When reference voltage (-) = Vss, MAX. value is following.

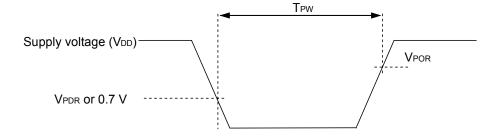
Zero-scale error: ±0.35 %FSR is added to the MAX. value of reference voltage (–) = AVREFM.

Integral linearity error: ±0.5 LSB is added to the MAX. value of reference voltage (–) = AVREFM.

±0.2 LSB is added to the MAX. value of reference voltage (–) = AVREFM.

2.8.2 Temperature sensor and internal reference voltage characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{V}_{SS} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V}, \text{HS (high-speed main) mode)}$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	V _{TMPS25}	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	V _{BGR}	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.8.3 POR circuit characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Rise time		1.51	1.55	V
	V _{PDR}	Fall time	1.46	1.50	1.54	V
Minimum pulse width Note	T _{PW}	Other than STOP/SUB_RUN/SUB_HALT	300			μs

Note This is the time required for the POR circuit to execute a reset operation when VDD falls below VPDR. When the main system clock (fMAIN) has been stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) of the clock operation status control register (CSC) or when the microcontroller enters STOP mode, this is the time required for the POR circuit to execute a reset operation between when VDD falls below 0.7 V and when VDD rises to VPOR or higher.

2.8.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD = VDD_RF = AVDD_RF \leq 3.6 V, Vss = Vss_RF = AVss_RF = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage	V _{LVI2}	Power supply rise time	3.07	3.13	3.19	V
voltage			Power supply fall time	3	3.06	3.12	V
		V LVI3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.9	2.96	3.02	V
		V _{LVI4}	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.8	2.86	2.91	V
		V _{LVI5}	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.7	2.75	2.81	V
		V _{LVI6}	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.6	2.65	2.7	V
		V _{LVI7}	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.5	2.55	2.6	V
		V _{LVI8}	Power supply rise time	2.45	2.5	2.55	V
			Power supply fall time	2.4	2.45	2.5	V
		V _{LVI9}	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2	2.04	2.08	V
		V _{LVI10}	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.9	1.94	1.98	V
		V _{LVI11}	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.8	1.84	1.87	V
		V _{LVI12}	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.7	1.73	1.77	V
		V _{LVI13}	Power supply rise time	1.64	1.67	1.7	V
			Power supply fall time	1.6	1.63	1.66	V
Minimum pu	lse width	TLW		300			μs
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol		Со	nditions	MIN.	TYP.	MAX.	Unit
Interrupt and	V _{LVDA0}	VPOC2, V	POC1, VPOC0 = 0, 0, 0, fallir	ng reset voltage	1.60	1.63	1.66	V
reset mode	V _{LVDA1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	V _{LVDA2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.8	1.84	1.87	V
	V _{LVDA3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDB0}	VPOC2, V	POC1, VPOC0 = 0, 0, 1, fallir	ng reset voltage	1.80	1.84	1.87	V
	V _{LVDB1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	V _{LVDB2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	V _{LVDB3}		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	V _{LVDC0}	VPOC2, V	/POC1, VPOC0 = 0, 1, 0, fal	ling reset voltage	2.40	2.45	2.50	V
	V _{LVDC1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	V _{LVDC2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	V _L VDD0	VPOC2, V	/POC1, VPOC0 = 0, 1, 1, fal	ling reset voltage	2.70	2.75	2.81	V
	V _{LVDD1}		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	V _{LVDD2}		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V

2.8.5 Supply voltage rise time

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{DD} rise slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.6 AC Characteristics.

2.9 RF Transceiver Characteristics

2.9.1 RF transmission characteristics

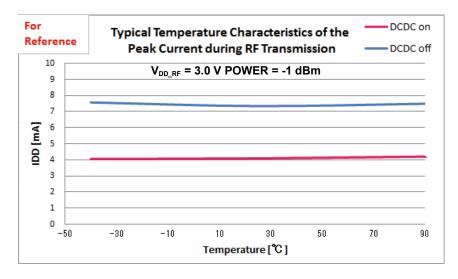
Unless specified otherwise, the measurement is performed by our evaluation board.

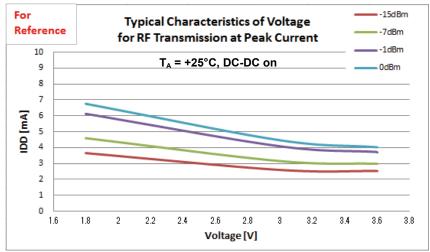
 $(T_A = +25^{\circ}C, V_{DD} = V_{DD_RF} = AV_{DD_RF} = 3.0 \text{ V}, f = 2440 \text{ MHz}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

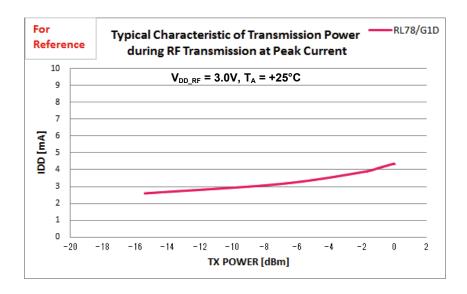
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
RF frequency range	RFcf			2402		2480	MHz
Data rate	RFDATA				1		Mbps
Maximum transmitted	RFPOWER	RF output pin	RF low power mode	-18	-15	-12	dBm
output power			RF normal mode	-3	0	3	dBm
			RF high performance mode	-3	0	3	dBm
Transmitted output power setting	RFTXPOW	0, -1, -2, -7, -10, -15 dBm		-15		0	dBm
Spurious radiation	RFTXSP	30 to 88 MHz	30 to 88 MHz		-76	-55	dBm
		88 to 216 MHz			-76	-52	dBm
		216 to 960 MHz			-74	-49	dBm
		960 to 1000 MHz			-74	-30	dBm
		1 to 12.75 GHz			-42	-41	dBm
		1.8 to 1.9 GHz			-73	-47	dBm
		5.15 to 5.3 GHz			-71	-47	dBm
Harmonics	RFTXHC1	2 nd Harmonics			-52	-41	dBm
	RF _{TXHC2}	3 rd Harmonics			-51	-41	dBm
Frequency tolerance	RFTXFERR			-30		+30	ppm
Impedance	RF _{Z1}				50+j0		Ω

Caution Install EMI countermeasures as required to prevent EMI effects of the RF transmission characteristics.

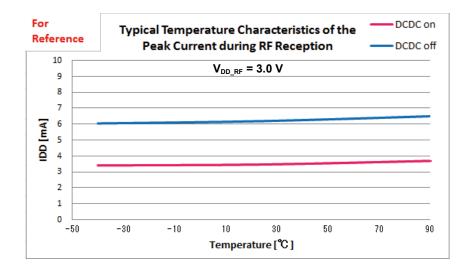
2.9.2 RF reception characteristics

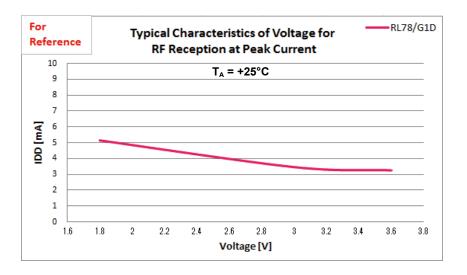

Unless specified otherwise, the measurement is performed by our evaluation board.

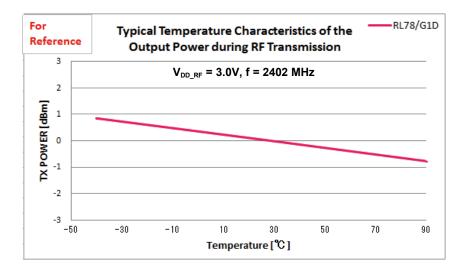

 $(T_A = +25^{\circ}C, V_{DD} = V_{DD_RF} = AV_{DD_RF} = 3.0 \text{ V}, f = 2440 \text{ MHz}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
RF input frequency	RFRXFRIN			2402		2480	MHz
Maximum input level	RFLEVL	PER ≤ 30.8%	RF low power mode	-10	0	-	dBm
		RF input pin	RF normal mode	-10	1	-	dBm
			RF high performance mode	-10	1	-	dBm
Receiver sensitivity	RFsty	PER ≤ 30.8%	RF low power mode	-	-60	-50	dBm
			RF normal mode	-	-90	-70	dBm
			RF high performance mode	-	-92	-70	dBm
Secondary radiation	RFRXSP		30 MHz to 1 GHz	-	-72	-57	dBm/ 100 kHz
			1 GHz to 12 GHz	-	-57	-54	dBm/ 100 kHz
Common channel rejection ratio	RFccr	PER ≤ 30.8%, Prf = –67dBm		-21	-12	-	dB
Adjacent channel	RFADCR	PER ≤ 30.8%	±1 MHz	-15	-5	-	dB
rejection ratio		Prf = -67 dBm	±2 MHz	17	29	-	dB
			±3 MHz	27	34	-	dB
Blocking	RFBLK	PER ≤ 30.8%	30 MHz - 2000 MHz	-30	-13	-	dB
		Prf = -67 dBm	2000 MHz to 2399 MHz	-35	-30	-	dBm
			2484 MHz to 3000 MHz	-35	-30	-	dBm
			> 3000 MHz	-30	-17	-	dBm
Frequency tolerance	RFRXFERR	PER ≤ 30.8%		-250		+250	kHz
RSSI accuracy	RFRSSIS	T _A = +25°C, -70	dBm ≤ Prf ≤ −10 dBm	-4	0	4	dB

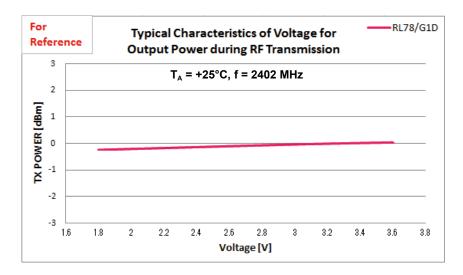
2.9.3 Performance mapping for typical RF (Reference)

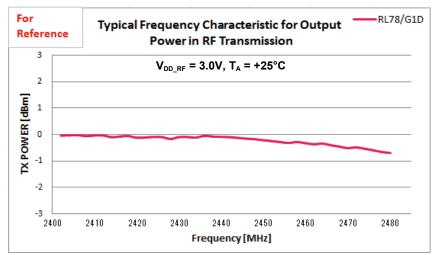

(1) Peak Current during RF Transmission



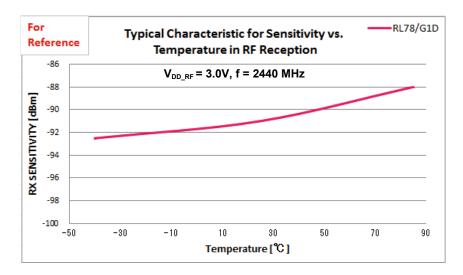


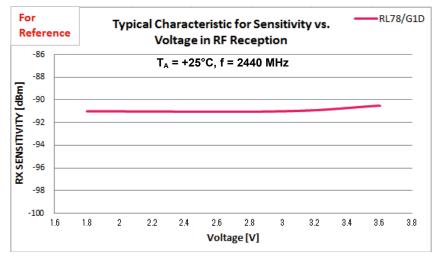
(2) Peak Current during RF Reception



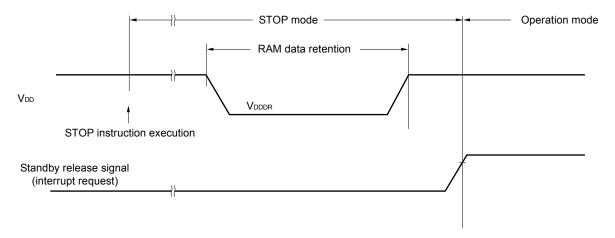


(3) RF Output Power during Transmission





(4) RF Reception Sensitivity



2.10 RAM Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		3.6	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

2.11 Flash Memory Programming Characteristics

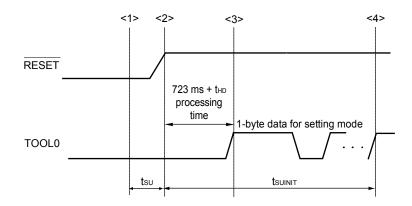
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le V_{DD} = V_{DD_RF} = AV_{DD_RF} \le 3.6 \text{ V}, V_{SS} = V_{SS_RF} = AV_{SS_RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	1.8 V ≤ V _{DD} ≤ 3.6 V	1		32	MHz
Number of code flash rewrites	Cerwr	Retained for 20 years, T _A = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year, T _A = 25°C		1,000,000		Times
Notes 1, 2, 3		Retained for 5 years, T _A = 85°C	100,000			Times
		Retained for 20 years, T _A = 85°C	10,000			Times

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
 - 2. When using flash memory programmer and Renesas Electronics self programming library
 - 3. This shows the flash memory characteristics. This is a result obtained from Renesas Electronics reliability test.

2.12 Special Flash Memory Programming Communication (UART)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{V}_{DD} = \text{V}_{DD}_{RF} = \text{AV}_{DD}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{V}_{SS}_{RF} = \text{AV}_{SS}_{RF} = 0 \text{ V})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		When programming of flash memory	115,200		1,000,000	bps

2.13 Timing of Entry to Flash Memory Programming Modes

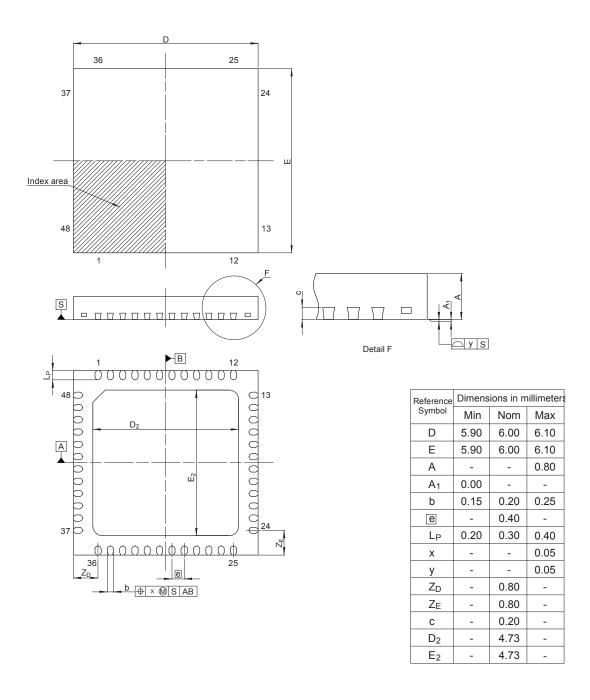
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \leq \text{Vdd} = \text{Vdd}_{RF} = \text{AVdd}_{RF} \leq 3.6 \text{ V}, \text{Vss} = \text{Vss}_{RF} = \text{AVss}_{RF} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Time to complete the communication for the initial setting after the external reset is released	tsuinit	POR and LVD reset must be released before the external reset is released.		100	ms
Time to release the external reset after the TOOL0 pin is set to the low level	t su	POR and LVD reset must be released before the external reset is released.	10		μs
Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must be released before the external reset is released.	1		ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset is released (POR and LVD reset must be released before the external reset is released.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit: Communication for the initial setting must be completed within 100 ms after the external reset is released during this period.

tsu: Time to release the external reset after the TOOL0 pin is set to the low level


thd: Time to hold the TOOL0 pin at the low level after the external reset is released (excluding the processing time of the firmware to control the flash memory)

3. PACKAGE DRAWINGS

3.1 48-pin plastic WQFN (6 × 6)

JEITA Package Code	RENESAS Code	Previous Code	MASS (Typ) [g]
P-HWQFN48-6x6-0.40	PWQN0048LB-A	-	0.07

Unit: mm

© 2015 Renesas Electronics Corporation. All rights reserved.

Rev	/isio	n His	torv
1/6/	11310	11 1113	tOI y

RL78/G1D Data Sheet

		Description			
Rev.	Date	Page	Summary		
1.00	Apr 24, 2015	-	First Edition issued		
1.10	Sep 25, 2015	p.1	Change of description in 1.1 Features		
		p.7, 9	Change of 1.6 Outline of Functions		
		p.14	Change of description in 2.3.2 On-chip oscillator characteristics		
		p.19	Change of description in 2.5. Current Consumption		
		p.23	Addition of specification to 2.5.1(3) Current for each peripheral circuit		
		p.65	Change of description in 2.9.1 RF transmission characteristics		
		p.66	Change of description in 2.9.2 RF reception characteristics		
		p.67 to 71	Change of description in 30.9.3 Performance mapping for typical RF (Reference)		
1.20	Dec 16, 2016	p.4	Change of pin name in 1.3 Pin Configuration (Top View)		
		p.58	Change of pin names in 2.8 Analog Characteristics (1)		
		p.60	Change of pin name in 2.8 Analog Characteristics (3)		

All trademarks and registered trademarks are the property of their respective owners.

Bluetooth is a trademark of Bluetooth SIG, Inc. U.S.A.

EEPROM is a trademark of Renesas Electronics Corporation.

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.